Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 140(5): 1945-1951, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29377680

ABSTRACT

The triple-helix stereocomplex of poly(methyl methacrylate) (PMMA) is a unique example of a multistranded synthetic helix that has significant utility and promise in materials science and nanotechnology. To gain a fundamental understanding of the underlying assembly process, discrete stereoregular oligomer libraries were prepared by combining stereospecific polymerization techniques with automated flash chromatography purification. Stereocomplex assembly of these discrete building blocks enabled the identification of (1) the minimum degree of polymerization required for the stereocomplex formation and (2) the dependence of the helix crystallization mode on the length of assembling precursors. More significantly, our experiments resolved binding selectivity between helical strands with similar molecular weights. This presents new opportunities for the development of next-generation polymeric materials based on a triple-helix motif.


Subject(s)
Polymethyl Methacrylate/chemistry , Binding Sites , Molecular Structure , Molecular Weight , Stereoisomerism
2.
Angew Chem Int Ed Engl ; 56(46): 14483-14487, 2017 11 13.
Article in English | MEDLINE | ID: mdl-28980360

ABSTRACT

The scope and accessibility of sequence-controlled multiblock copolymers is demonstrated by direct "in situ" polymerization of hydrophobic, hydrophilic and fluorinated monomers. Key to the success of this strategy is the ability to synthesize ABCDE, EDCBA and EDCBABCDE sequences with high monomer conversions (>98 %) through iterative monomer additions, yielding excellent block purity and low overall molar mass dispersities (Ð<1.16). Small-angle X-ray scattering showed that certain sequences can form well-ordered mesostructures. This synthetic approach constitutes a simple and versatile platform for expanding the availability of tailored polymeric materials from readily available monomers.

3.
Angew Chem Int Ed Engl ; 56(47): 15118-15122, 2017 11 20.
Article in English | MEDLINE | ID: mdl-28984016

ABSTRACT

We demonstrate a novel crosslinked disulfide system as a cathode material for Li-S cells that is designed with the two criteria of having only a single point of S-S scission and maximizing the ratio of S-S to the electrochemically inactive framework. The material therefore maximizes theoretical capacity while inhibiting the formation of polysulfide intermediates that lead to parasitic shuttle. The material we report contains a 1:1 ratio of S:C with a theoretical capacity of 609 mAh g-1 . The cell gains capacity through 100 cycles and has 98 % capacity retention thereafter through 200 cycles, demonstrating stable, long-term cycling. Raman spectroscopy confirms the proposed mechanism of disulfide bonds breaking to form a S-Li thiolate species upon discharge and reforming upon charge. Coulombic efficiencies near 100 % for every cycle, suggesting the suppression of polysulfide shuttle through the molecular design.

4.
Beilstein J Org Chem ; 13: 1693-1701, 2017.
Article in English | MEDLINE | ID: mdl-28904612

ABSTRACT

This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.

5.
J Am Chem Soc ; 139(16): 5939-5945, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28406296

ABSTRACT

A highly efficient photomediated atom transfer radical polymerization protocol is reported for semi-fluorinated acrylates and methacrylates. Use of the commercially available solvent, 2-trifluoromethyl-2-propanol, optimally balances monomer, polymer, and catalyst solubility while eliminating transesterification as a detrimental side reaction. In the presence of UV irradiation and ppm concentrations of copper(II) bromide and Me6-TREN (TREN = tris(2-aminoethyl amine)), semi-fluorinated monomers with side chains containing between three and 21 fluorine atoms readily polymerize under controlled conditions. The resulting polymers exhibit narrow molar mass distributions (D ≈ 1.1) and high end group fidelity, even at conversions greater than 95%. This level of control permits the in situ generation of chain-end functional homopolymers and diblock copolymers, providing facile access to semi-fluorinated macromolecules using a single methodology with unprecedented monomer scope. The results disclosed herein should create opportunities across a variety of fields that exploit fluorine-containing polymers for tailored bulk, interfacial, and solution properties.

6.
Chem Commun (Camb) ; 53(11): 1888-1891, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28111654

ABSTRACT

We report a metal-free strategy for the chain-end modification of RAFT polymers utilizing visible light. By turning the light source on or off, the reaction pathway in one pot can be switched between either complete desulfurization (hydrogen chain-end) or simple cleavage (thiol chain-end), respectively. The versatility of this process is exemplified by application to a wide range of polymer backbones under mild, quantitative conditions using commercial reagents.

7.
ACS Macro Lett ; 6(7): 668-673, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-35650863

ABSTRACT

The effect of dispersity on block polymer self-assembly was studied in the monodisperse limit using a combination of synthetic chemistry, matrix-assisted laser desorption ionization spectroscopy, and small-angle X-ray scattering. Oligo(methyl methacrylate) (oligoMMA) and oligo(dimethylsiloxane) (oligoDMS) homopolymers were synthesized by conventional polymerization techniques and purified to generate an array of discrete, semidiscrete, and disperse building blocks. Coupling reactions afforded oligo(DMS-MMA) block polymers with precisely tailored molar mass distributions spanning single molecular systems (D = 1.0) to low-dispersity mixtures (D ≈ 1.05). Discrete materials exhibit a pronounced decrease in domain spacing and sharper scattering reflections relative to disperse analogues. The order-disorder transition temperature (TODT) also decreases with increasing dispersity, suggesting stabilization of the disordered phase, presumably due to the strengthening of composition fluctuations at the low molar masses investigated.

8.
J Colloid Interface Sci ; 478: 155-63, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27295319

ABSTRACT

In our present work we developed a novel graphene wrapping approach of Ni@Fe2O3 superparticles, which can be extended as a concept approach for other nanomaterials as well. It uses sulfonated reduced graphene oxide, but avoids thermal treatments and use of toxic agents like hydrazine for its reduction. The modification of graphene oxide is achieved by the introduction of sulfate groups accompanied with reduction and elimination reactions, due to the treatment with oleum. The successful wrapping of nanoparticles is proven by energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy and Raman spectroscopy. The developed composite material shows strongly improved performance as anode material in lithium-ion batteries (compared to unwrapped Ni@Fe2O3) as it offers a reversible capacity of 1051mAhg(-1) after 40 cycles at C/20, compared with 460mAhg(-1) for unwrapped Ni@Fe2O3. The C rate capability is also improved by the wrapping approach, as specific capacities for wrapped particles are about twice of those offered by unwrapped particles. Additionally, the benefit for the use of the advanced superparticle morphology is demonstrated by comparing wrapped Ni@Fe2O3 particles with wrapped Fe2O3 nanorice.

9.
Adv Energy Mater ; 6(4): 1501489, 2016 02.
Article in English | MEDLINE | ID: mdl-27134618

ABSTRACT

The synthesis of in situ polymer-functionalized anatase TiO2 particles using an anchoring block copolymer with hydroxamate as coordinating species is reported, which yields nanoparticles (≈11 nm) in multigram scale. Thermal annealing converts the polymer brushes into a uniform and homogeneous carbon coating as proven by high resolution transmission electron microscopy and Raman spectroscopy. The strong impact of particle size as well as carbon coating on the electrochemical performance of anatase TiO2 is demonstrated. Downsizing the particles leads to higher reversible uptake/release of sodium cations per formula unit TiO2 (e.g., 0.72 eq. Na+ (11 nm) vs only 0.56 eq. Na+ (40 nm)) while the carbon coating improves rate performance. The combination of small particle size and homogeneous carbon coating allows for the excellent electrochemical performance of anatase TiO2 at high (134 mAh g-1 at 10 C (3.35 A g-1)) and low (≈227 mAh g-1 at 0.1 C) current rates, high cycling stability (full capacity retention between 2nd and 300th cycle at 1 C) and improved coulombic efficiency (≈99.8%).

10.
Macromol Rapid Commun ; 36(11): 1075-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25598387

ABSTRACT

The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by Raman spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The benefit of the conformal carbon coating of the Au@ZnO multipods regarding its application as lithium-ion anode material is revealed by performing galvanostatic cycling, showing a highly enhanced and stabilized electrochemical performance of the carbon-coated particles (still 831 mAh g(-1) after 150 cycles) with respect to the uncoated ones (only 353 mAh g(-1) after 10 cycles).


Subject(s)
Electric Power Supplies , Gold/chemistry , Lithium/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Zinc Oxide/chemistry , Acrylic Resins/chemistry , Carbon/chemistry , Electrochemical Techniques , Electrodes , Ions/chemistry , Microscopy, Electron, Transmission , Polymers/chemical synthesis , Spectrometry, X-Ray Emission
11.
ACS Appl Mater Interfaces ; 6(15): 12486-94, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25051046

ABSTRACT

We designed and characterized a cylindrical nanopore that exhibits high electrochemical current rectification ratios at low and intermediate electrolyte concentrations. For this purpose, the track-etched single cylindrical nanopore in polymer membrane was coated with a gold (Au) layer via electroless plating technique. Then, a non-homogeneous fixed charge distribution inside the Au-coated nanopore was obtained by incorporating thiol-terminated uncharged poly(N-isopropylacrylamide) chains in series to poly(4-vinylpyridine) chains, which were positively charged at acidic pH values. The functionalization reaction was checked by measuring the current-voltage curves prior to and after the chemisorption of polymer chains. The experimental nanopore characterization included the effects of temperature, adsorption of chloride ions, electrolyte concentration, and pH of the external solutions. The results obtained are further explained in terms of a theoretical continuous model. The combination of well-established chemical procedures (thiol and self-assembled monolayer formation chemistry, electroless plating, ion track etching) and physical models (two-region pore and Nernst-Planck equations) permits the obtainment of a new nanopore with high current rectification ratios. The single pore could be scaled up to multipore membranes of potential interest for pH sensing and chemical actuators.

12.
Macromol Rapid Commun ; 34(21): 1693-700, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24115201

ABSTRACT

Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) .


Subject(s)
Acrylic Resins/chemistry , Carbon/chemistry , Electric Power Supplies , Lithium/chemistry , Nanotubes/chemistry , Titanium/chemistry , Acrylic Resins/chemical synthesis , Electrochemical Techniques , Ions/chemistry , Molecular Structure , Particle Size , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...