Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34281981

ABSTRACT

The term "memory strength" generally refers to how well one remembers something. But more precisely it contains multiple modalities, such as how easily, how accurately, how confidently and how vividly we remember it. In human, these modalities of memory strength are dissociable. In this study, we asked whether we can isolate a behavioral component that is dissociable from others in hippocampus-dependent memory tasks in mice, which potentially reflect a modality of memory strength. Using a virus-mediated inducible method, we ablated immature neurons in the dentate gyrus in mice after we trained the mice with hippocampus-dependent memory tasks normally. In memory retrieval tests, these ablated mice initially showed intact performance. However, the ablated mice ceased learned behavior prematurely within a trial compared with control mice. In addition, the ablated mice showed shorter duration of individual episodes of learned behavior. Both affected behavioral measurements point to persistence of learned behavior. Thus, the effect of the postlearning manipulation showed dissociation between initial performance and persistence of learned behavior. These two behavioral components are likely to reflect different brain functions and be mediated by separate mechanisms, which might represent different modalities of memory strength. These simple dissociable measurements in widely used behavioral paradigms would be useful to understand detailed mechanisms underlying the expression of learned behavior and potentially different modalities of memory strength in mice. We also discuss a potential role that immature neurons in the dentate gyrus may play in persistence of learned behavior.


Subject(s)
Neural Stem Cells , Neurons , Animals , Dentate Gyrus , Hippocampus , Memory , Mice , Neurogenesis
2.
J Neurosci ; 39(14): 2620-2634, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30737311

ABSTRACT

Activity-related sodium transients induced by glutamate uptake represent a special form of astrocyte excitability. Astrocytes of the neocortex, as opposed to the hippocampus proper, also express ionotropic glutamate receptors, which might provide additional sodium influx. We compared glutamate-related sodium transients in astrocytes and neurons in slices of the neocortex and hippocampus of juvenile mice of both sexes, using widefield and multiphoton imaging. Stimulation of glutamatergic afferents or glutamate application induced sodium transients that were twice as large in neocortical as in hippocampal astrocytes, despite similar neuronal responses. Astrocyte sodium transients were reduced by ∼50% upon blocking NMDA receptors in the neocortex, but not hippocampus. Neocortical, but not hippocampal, astrocytes exhibited marked sodium increases in response to NMDA. These key differences in sodium signaling were also observed in neonates and in adults. NMDA application evoked local calcium transients in processes of neocortical astrocytes, which were dampened upon blocking sodium/calcium exchange (NCX) with KB-R7943 or SEA0400. Mathematical computation based on our data predict that NMDA-induced sodium increases drive the NCX into reverse mode, resulting in calcium influx. Together, our study reveals a considerable regional heterogeneity in astrocyte sodium transients, which persists throughout postnatal development. Neocortical astrocytes respond with much larger sodium elevations to glutamatergic activity than hippocampal astrocytes. Moreover, neocortical astrocytes experience NMDA-receptor-mediated sodium influx, which hippocampal astrocytes lack, and which drives calcium import through reverse NCX. This pathway thereby links sodium to calcium signaling and represents a new mechanism for the generation of local calcium influx in neocortical astrocytes.SIGNIFICANCE STATEMENT Astrocyte calcium signals play a central role in neuron-glia interaction. Moreover, activity-related sodium transients may represent a new form of astrocyte excitability. Here we show that activation of NMDA receptors results in prominent sodium transients in neocortical, but not hippocampal, astrocytes in the mouse brain. NMDA receptor activation is accompanied by local calcium signaling in processes of neocortical astrocytes, which is augmented by sodium-driven reversal of the sodium/calcium exchanger. Our data demonstrate a significant regional heterogeneity in the magnitude and mechanisms of astrocyte sodium transients. They also suggest a close interrelation between NMDA-receptor-mediated sodium influx and calcium signaling through the reversal of sodium/calcium exchanger, thereby establishing a new pathway for the generation of local calcium signaling in astrocyte processes.


Subject(s)
Astrocytes/physiology , CA1 Region, Hippocampal/physiology , Neocortex/physiology , Sodium-Calcium Exchanger/physiology , Animals , Astrocytes/drug effects , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , Calcium Signaling/drug effects , Calcium Signaling/physiology , Female , Male , Mice , Mice, Inbred BALB C , Neocortex/cytology , Neocortex/drug effects , Organ Culture Techniques , Sodium-Calcium Exchanger/antagonists & inhibitors , Thiourea/analogs & derivatives , Thiourea/pharmacology
3.
Brain Res Bull ; 136: 76-84, 2018 01.
Article in English | MEDLINE | ID: mdl-28189516

ABSTRACT

The idea that astrocytes may be active partners in synaptic information processing has recently emerged from abundant experimental reports. Because of their spatial proximity to neurons and their bidirectional communication with them, astrocytes are now considered as an important third element of the synapse. Astrocytes integrate and process synaptic information and by doing so generate cytosolic calcium signals that are believed to reflect neuronal transmitter release. Moreover, they regulate neuronal information transmission by releasing gliotransmitters into the synaptic cleft affecting both pre- and postsynaptic receptors. Concurrent with the first experimental reports of the astrocytic impact on neural network dynamics, computational models describing astrocytic functions have been developed. In this review, we give an overview over the published computational models of astrocytic functions, from single-cell dynamics to the tripartite synapse level and network models of astrocytes and neurons.


Subject(s)
Astrocytes/physiology , Computer Simulation , Models, Neurological , Neurons/physiology , Synapses/physiology , Animals , Humans
4.
PLoS Comput Biol ; 13(2): e1005377, 2017 02.
Article in English | MEDLINE | ID: mdl-28192424

ABSTRACT

Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal.


Subject(s)
Astrocytes/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Models, Biological , Receptors, Metabotropic Glutamate/metabolism , Animals , Cells, Cultured , Computer Simulation , Humans , Metabolic Flux Analysis/methods , Signal Transduction/physiology , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...