Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Viruses ; 15(8)2023 08 05.
Article in English | MEDLINE | ID: mdl-37632041

ABSTRACT

New Jersey was among the first states impacted by the COVID-19 pandemic, with one of the highest overall death rates in the nation. Nevertheless, relatively few reports have been published focusing specifically on New Jersey. Here we report on molecular, clinical, and epidemiologic observations, from the largest healthcare network in the state, in a cohort of vaccinated and unvaccinated individuals with laboratory-confirmed SARS-CoV-2 infection. We conducted molecular surveillance of SARS-CoV-2-positive nasopharyngeal swabs collected in nine hospitals from December 2020 through June 2022, using both whole genome sequencing (WGS) and a real-time RT-PCR screening assay targeting spike protein mutations found in variants of concern (VOCs) within our region. De-identified clinical data were obtained retrospectively, including demographics, COVID-19 vaccination status, ICU admission, ventilator support, mortality, and medical history. Statistical analyses were performed to identify associations between SARS-CoV-2 variants, vaccination status, clinical outcomes, and medical risk factors. A total of 5007 SARS-CoV-2-positive nasopharyngeal swabs were successfully screened and/or sequenced. Variant screening identified three predominant VOCs, including Alpha (n = 714), Delta (n = 1877), and Omicron (n = 1802). Omicron isolates were further sub-typed as BA.1 (n = 899), BA.2 (n = 853), or BA.4/BA.5 (n = 50); the remaining 614 isolates were classified as "Other". Approximately 31.5% (1577/5007) of the samples were associated with vaccine breakthrough infections, which increased in frequency following the emergence of Delta and Omicron. Severe clinical outcomes included ICU admission (336/5007 = 6.7%), ventilator support (236/5007 = 4.7%), and mortality (430/5007 = 8.6%), with increasing age being the most significant contributor to each (p < 0.001). Unvaccinated individuals accounted for 79.7% (268/336) of ICU admissions, 78.3% (185/236) of ventilator cases, and 74.4% (320/430) of deaths. Highly significant (p < 0.001) increases in mortality were observed in individuals with cardiovascular disease, hypertension, cancer, diabetes, and hyperlipidemia, but not with obesity, thyroid disease, or respiratory disease. Significant differences (p < 0.001) in clinical outcomes were also noted between SARS-CoV-2 variants, including Delta, Omicron BA.1, and Omicron BA.2. Vaccination was associated with significantly improved clinical outcomes in our study, despite an increase in breakthrough infections associated with waning immunity, greater antigenic variability, or both. Underlying comorbidities contributed significantly to mortality in both vaccinated and unvaccinated individuals, with increasing risk based on the total number of comorbidities. Real-time RT-PCR-based screening facilitated timely identification of predominant variants using a minimal number of spike protein mutations, with faster turnaround time and reduced cost compared to WGS. Continued evolution of SARS-CoV-2 variants will likely require ongoing surveillance for new VOCs, with real-time assessment of clinical impact.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , New Jersey/epidemiology , COVID-19 Vaccines , Pandemics , Retrospective Studies , Spike Glycoprotein, Coronavirus , Breakthrough Infections
2.
mBio ; 13(5): e0214122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35997285

ABSTRACT

Examining the neutralizing capacity of monoclonal antibodies (MAbs) used to treat COVID-19, as well as antibodies recovered from unvaccinated, previously vaccinated, and infected individuals, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) remains critical to study. Here, we report on a SARS-CoV-2 nosocomial outbreak caused by the SARS-CoV-2 R.1 variant harboring the E484K mutation in a 281-bed psychiatric facility in New Jersey among unvaccinated inpatients and health care professionals (HCPs). A total of 81 inpatients and HCPs tested positive for SARS-Cov-2 by reverse transcription (RT)-PCR from 29 October 9 to 30 November 2020. The R.1 variant exhibits partial or complete resistance to two MAbs in clinical use, as well as 2 receptor binding domain MAbs and 4 N-terminal domain (NTD) MAbs. NTD MAbs against pseudovirus harboring single characteristic R.1 mutations highlight the role of S255F in loss of activity. Additionally, we note dampened neutralization capacity by plasma from individuals with previous SARS-CoV-2 infection or sera from vaccinated individuals. The relative resistance of the R.1 variant is likely lower than that of B.1.351 and closer to that of P.1 and B.1.526. The R.1 lineage has been reported in 47 states in the United States and 40 countries. Although high proportions exhibited symptoms (26% and 61% among patients and HCPs, respectively) and relative antibody resistance, we detected only 10 R.1 variants from over 2,900 samples (~0.34%) collected from January to October 2021. Among 3 vaccinated individuals previously infected with R.1, we observed robust neutralizing antibody responses against SARS-CoV-2 wild type and VOCs. IMPORTANCE The neutralizing capacities of monoclonal antibodies used to treat COVID-19 and of those recovered from previously infected and vaccinated individuals against SARS-CoV-2 variants of concern (VOCs) remain important questions. We report on a nosocomial outbreak caused by a SARS-CoV-2 R.1 variant harboring an E484K mutation among 81 unvaccinated inpatients and health care professionals. We note high attack rates with symptoms in nearly 50% of infected individuals, in sharp contrast to an unrelated institutional outbreak caused by the R.1 variant among a vaccinated population. We found little evidence of significant community spillover. This variant exhibits partial or complete resistance to two monoclonal antibodies in clinical use and dampened the neutralization capacity of convalescent-phase plasma from individuals with previous infection or sera from vaccinated individuals. Among three vaccinated individuals previously infected with R.1, we observed robust neutralizing antibody responses against SARS-CoV-2 wild type and VOCs. These findings underscore the importance of vaccination for prevention of symptomatic COVID-19 disease.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/epidemiology , Neutralization Tests , Antibodies, Viral , New Jersey/epidemiology , Antibodies, Neutralizing , Disease Outbreaks , Antibodies, Monoclonal , Genomics
3.
Microbiol Spectr ; 9(3): e0188221, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34787439

ABSTRACT

Emergence of SARS-CoV-2 with high transmission and immune evasion potential, the so-called variants of concern (VOC), is a major concern. We describe the early genomic epidemiology of SARS-CoV-2 recovered from vaccinated health care professionals (HCP). Our postvaccination COVID-19 symptoms-based surveillance program among HCPs in a 17-hospital network identified all vaccinated HCPs who tested positive for COVID-19 after routine screening or after self-reporting. From 1 January 2021 to 30 April 2021, 23,687 HCPs received either mRNA-1273 or BNT162b2 mRNA vaccine. All available postvaccination SARS-CoV-2 samples and a random collection from nonvaccinated patients during the similar time frame were subjected to VOC screening and whole-genome sequencing (WGS). Sixty-two percent (23,697/37,500) of HCPs received at least one vaccine dose, with 60% (22,458) fully vaccinated. We detected 138 (0.58%, 138/23,697) COVID-19 cases, 105 among partially vaccinated and 33 (0.15%, 33/22,458) among fully vaccinated. Five partially vaccinated required hospitalization, four with supplemental oxygen. VOC screening from 16 fully vaccinated HCPs identified 6 (38%) harboring N501Y and 1 (6%) with E484K polymorphisms; percentage of concurrent nonvaccinated samples was 37% (523/1,404) and 20% (284/1,394), respectively. There was an upward trend from January to April for E484K/Q (3% to 26%) and N501Y (1% to 49%). WGS analysis from vaccinated and nonvaccinated individuals indicated highly congruent phylogenies. We did not detect an increased frequency of any receptor-binding domain (RBD)/N-terminal domain (NTD) polymorphism between groups (P > 0.05). Our results support robust protection by vaccination, particularly among recipients of both doses. Despite VOCs accounting for over 40% of SARS-CoV-2 from fully vaccinated individuals, the genomic diversity appears to proportionally represent VOCs among nonvaccinated populations. IMPORTANCE A number of highly effective vaccines have been developed and deployed to combat the COVID-19 pandemic. The emergence and epidemiological dominance of SARS-CoV-2 mutants with high transmission potential and immune evasion properties, the so-called variants of concern (VOC), continue to be a major concern. Whether these VOCs alter the efficacy of the administered vaccines is of great concern and a critical question to study. We describe the initial genomic epidemiology of SARS-CoV-2 recovered from partial/fully vaccinated health care professionals and probe specifically for VOC enrichment. Our findings support the high level of protection provided by full vaccination despite a steep increase in the prevalence of polymorphisms associated with increased transmission potential (N501Y) and immune evasion (E484K) in the nonvaccinated population. Thus, we do not find evidence of VOC enrichment among vaccinated groups. Overall, the genomic diversity of SARS-CoV-2 recovered postvaccination appears to proportionally represent the observed viral diversity within the community.


Subject(s)
COVID-19 Vaccines , COVID-19/epidemiology , Epidemiologic Studies , Genomics , Health Personnel , Molecular Epidemiology , SARS-CoV-2/genetics , Vaccination , 2019-nCoV Vaccine mRNA-1273 , Adult , Aged , BNT162 Vaccine , COVID-19/virology , Female , Genotype , Humans , Male , Middle Aged , Mutation , New Jersey , Pandemics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus , Whole Genome Sequencing , Young Adult
4.
mSphere ; 6(4): e0048021, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34431691

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), harboring spike protein N-terminal domain (NTD) or receptor-binding domain (RBD) mutations, exhibit reduced in vitro susceptibility to convalescent-phase serum, commercial antibody cocktails, and vaccine neutralization and have been associated with reinfections. The accumulation of these mutations could be the consequence of intrahost viral evolution due to prolonged infection in immunocompromised hosts. In this study, we document the microevolution of SARS-CoV-2 recovered from sequential tracheal aspirates from an immunosuppressed patient on steroids and convalescent plasma therapy and identify the emergence of multiple NTD and RBD mutations. SARS-CoV-2 genomes from the first swab (day 0) and from three tracheal aspirates (days 7, 21, and 27) were compared at the sequence level. We identified a mixed viral population with five different S protein mutations (141 to 144 deletion, 243 to 244 deletion, E484K, Q493K, and Q493R) at the NTD or RBD region from the second tracheal aspirate sample (day 21) and a predominance of the S protein 141 to 144 LGVY deletion and E484K mutant on day 27. The neutralizing antibodies against various S protein lentiviral pseudovirus mutants, as well as the anti-SARS-CoV-2 total Ig and IgG, showed "U" shape dynamics, in support of the endogenous development of neutralizing antibodies. The patient's compromised immune status, the antirejection regiment, convalescent plasma treatment, and the development of neutralizing antibodies may have resulted in unique selective pressures on the intrahost genomic evolution, and this observation supports the hypotheses that VOCs can independently arise and that immunocompromised patients on convalescent plasma therapy are potential breeding grounds for immune escape mutants. IMPORTANCE Over a year of the COVID-19 pandemic, distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages have arisen in multiple geographic areas around the world. SARS-CoV-2 variants of concern (VOCs), i.e., B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), and B.1.617.2 (delta), harboring mutations and/or deletions in spike protein N-terminal domain (NTD) or receptor-binding domain (RBD) regions showed evidence of increased transmissibility and disease severity and possible reduced vaccine efficacy. In this study, we report the emergence of five different NTD and RBD mutations in an uncommon SARS-CoV-2 B.1.369 lineage from an immunosuppressed patient undergoing steroid and convalescent plasma therapy. The observation highlighted that VOCs can independently arise in immunocompromised populations undergoing anti-SARS-CoV-2 therapy, and enhanced measures will be required to reduce the transmission.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , Immunocompromised Host/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Humans , Immunization, Passive , Male , Middle Aged , Mutation/immunology , Neutralization Tests/methods , Pandemics/prevention & control , Protein Binding/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
5.
Sci Rep ; 9(1): 19123, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836783

ABSTRACT

To test the performance of a new sequencing platform, develop an updated somatic calling pipeline and establish a reference for future benchmarking experiments, we performed whole-genome sequencing of 3 common cancer cell lines (COLO-829, HCC-1143 and HCC-1187) along with their matched normal cell lines to great sequencing depths (up to 278x coverage) on both Illumina HiSeqX and NovaSeq sequencing instruments. Somatic calling was generally consistent between the two platforms despite minor differences at the read level. We designed and implemented a novel pipeline for the analysis of tumor-normal samples, using multiple variant callers. We show that coupled with a high-confidence filtering strategy, the use of combination of tools improves the accuracy of somatic variant calling. We also demonstrate the utility of the dataset by creating an artificial purity ladder to evaluate the somatic pipeline and benchmark methods for estimating purity and ploidy from tumor-normal pairs. The data and results of the pipeline are made accessible to the cancer genomics community.


Subject(s)
Gene Expression Profiling , Neoplasms/genetics , Whole Genome Sequencing/methods , Algorithms , Alleles , Calibration , Cell Line, Tumor , Computational Biology , False Positive Reactions , Genetic Variation , Genome, Human , Genomics , High-Throughput Nucleotide Sequencing/methods , Humans , Reproducibility of Results , Sequence Analysis, DNA
6.
JCO Precis Oncol ; 12017 May.
Article in English | MEDLINE | ID: mdl-35172488

ABSTRACT

To describe the unique clinical features, determine the genomics, and investigate the metabolic derangement of an extremely rare form of a hereditary lethal kidney cancer syndrome. Patients and Methods: Three patients with lethal kidney cancer (age 19, 20, and 37 years) exhibiting persistent (1 to 3 months) extremely high levels of blood lactate (> 5 mM) despite normal oxygen perfusion, highly avid tumors on [18F]fluorodeoxyglucose positron emission tomography (PET), and pleomorphic histopathologic features were identified and treated in a single institute. Integrated studies including whole-genome sequencing (WGS), targeted sequencing, immunohistochemistry, cell-based assays, and 18F-glutamine PET imaging were performed to investigate this rare kidney cancer syndrome. Results: All three patients with kidney cancer were initially given various diagnoses as a result of diverse tumor histopathology and atypical clinical presentations. The correct diagnoses of these SDHB-mutated renal cell carcinomas were first made based on cancer genomics. Genomic studies of the blood and tumors of these patients identified three different kinds of germline loss-of-function mutations in the SDHB gene and the common loss of heterozygosity in the remaining SDHB allele thorough somatic chromosome 1p deletion. In one patient, WGS revealed that a germline mutation of SDHB coupled with loss of heterozygosity was the sole genetic event. Cancer evolution analysis of SDHB tumors based on WGS demonstrated that SDHB in kidney epithelium fulfills the Knudson two-hit criteria as a major tumor suppressor gene. SDHB -/- tumor cells displayed increase in glucose uptake and lactate production, alteration in mitochondrial architecture, and defect in oxidative respiration. 18F-Glutamine PET imaging studies demonstrated increased glutamine metabolism. Conclusion: SDHB-deficient metastatic renal cell carcinoma is a rare, aggressive form of kidney cancer that manifests with clinical evidence of a severe Warburg effect, and genomic studies demonstrated two genetic hits at SDHB genes during kidney tumorigenesis.

7.
Proc Natl Acad Sci U S A ; 113(43): 11998-12005, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27790981

ABSTRACT

Many Leishmania (Viannia) parasites harbor the double-stranded RNA virus Leishmania RNA virus 1 (LRV1), which has been associated with increased disease severity in animal models and humans and with drug treatment failures in humans. Remarkably, LRV1 survives in the presence of an active RNAi pathway, which in many organisms controls RNA viruses. We found significant levels (0.4 to 2.5%) of small RNAs derived from LRV1 in both Leishmania braziliensis and Leishmania guyanensis, mapping across both strands and with properties consistent with Dicer-mediated cleavage of the dsRNA genome. LRV1 lacks cis- or trans-acting RNAi inhibitory activities, suggesting that virus retention must be maintained by a balance between RNAi activity and LRV1 replication. To tilt this balance toward elimination, we targeted LRV1 using long-hairpin/stem-loop constructs similar to those effective against chromosomal genes. LRV1 was completely eliminated, at high efficiency, accompanied by a massive overproduction of LRV1-specific siRNAs, representing as much as 87% of the total. For both L. braziliensis and L. guyanensis, RNAi-derived LRV1-negative lines were no longer able to induce a Toll-like receptor 3-dependent hyperinflammatory cytokine response in infected macrophages. We demonstrate in vitro a role for LRV1 in virulence of L. braziliensis, the Leishmania species responsible for the vast majority of mucocutaneous leishmaniasis cases. These findings establish a targeted method for elimination of LRV1, and potentially of other Leishmania viruses, which will facilitate mechanistic dissection of the role of LRV1-mediated virulence. Moreover, our data establish a third paradigm for RNAi-viral relationships in evolution: one of balance rather than elimination.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmaniasis, Mucocutaneous/drug therapy , Leishmaniavirus/drug effects , Oligoribonucleotides, Antisense/pharmacology , RNA, Double-Stranded/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/metabolism , Gene Expression , Inverted Repeat Sequences , Leishmania braziliensis/pathogenicity , Leishmania braziliensis/virology , Leishmania guyanensis/pathogenicity , Leishmania guyanensis/virology , Leishmaniasis, Mucocutaneous/parasitology , Leishmaniasis, Mucocutaneous/virology , Leishmaniavirus/genetics , Leishmaniavirus/metabolism , Macrophages/parasitology , Macrophages/virology , Mice , Oligoribonucleotides, Antisense/genetics , Oligoribonucleotides, Antisense/metabolism , RNA Interference/drug effects , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Symbiosis/genetics , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Virus Replication/drug effects
8.
J Clin Oncol ; 34(33): 4000-4007, 2016 11 20.
Article in English | MEDLINE | ID: mdl-27646943

ABSTRACT

Purpose Owing to its exquisite chemotherapy sensitivity, most patients with metastatic germ cell tumors (GCTs) are cured with cisplatin-based chemotherapy. However, up to 30% of patients with advanced GCT exhibit cisplatin resistance, which requires intensive salvage treatment, and have a 50% risk of cancer-related death. To identify a genetic basis for cisplatin resistance, we performed whole-exome and targeted sequencing of cisplatin-sensitive and cisplatin-resistant GCTs. Methods Men with GCT who received a cisplatin-containing chemotherapy regimen and had available tumor tissue were eligible to participate in this study. Whole-exome sequencing or targeted exon-capture-based sequencing was performed on 180 tumors. Patients were categorized as cisplatin sensitive or cisplatin resistant by using a combination of postchemotherapy parameters, including serum tumor marker levels, radiology, and pathology at surgical resection of residual disease. Results TP53 alterations were present exclusively in cisplatin-resistant tumors and were particularly prevalent among primary mediastinal nonseminomas (72%). TP53 pathway alterations including MDM2 amplifications were more common among patients with adverse clinical features, categorized as poor risk according to the International Germ Cell Cancer Collaborative Group (IGCCCG) model. Despite this association, TP53 and MDM2 alterations predicted adverse prognosis independent of the IGCCCG model. Actionable alterations, including novel RAC1 mutations, were detected in 55% of cisplatin-resistant GCTs. Conclusion In GCT, TP53 and MDM2 alterations were associated with cisplatin resistance and inferior outcomes, independent of the IGCCCG model. The finding of frequent TP53 alterations among mediastinal primary nonseminomas may explain the more frequent chemoresistance observed with this tumor subtype. A substantial portion of cisplatin-resistant GCTs harbor actionable alterations, which might respond to targeted therapies. Genomic profiling of patients with advanced GCT could improve current risk stratification and identify novel therapeutic approaches for patients with cisplatin-resistant disease.


Subject(s)
Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Neoplasms, Germ Cell and Embryonal/drug therapy , Neoplasms, Germ Cell and Embryonal/genetics , Adult , Humans , Mutation , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Suppressor Protein p53/genetics , rac1 GTP-Binding Protein/genetics
9.
J Exp Med ; 213(1): 25-34, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26666262

ABSTRACT

t(8;21) is one of the most frequent chromosomal abnormalities observed in acute myeloid leukemia (AML). However, expression of AML1-ETO is not sufficient to induce transformation in vivo. Consistent with this observation, patients with this translocation harbor additional genetic abnormalities, suggesting a requirement for cooperating mutations. To better define the genetic landscape in AML and distinguish driver from passenger mutations, we compared the mutational profiles of AML1-ETO-driven mouse models of leukemia with the mutational profiles of human AML patients. We identified TET2 and PTPN11 mutations in both mouse and human AML and then demonstrated the ability of Tet2 loss and PTPN11 D61Y to initiate leukemogenesis in concert with expression of AML1-ETO in vivo. This integrative genetic profiling approach allowed us to accurately predict cooperating events in t(8;21)(+) AML in a robust and unbiased manner, while also revealing functional convergence in mouse and human AML.


Subject(s)
Alleles , Epistasis, Genetic , Genomics/methods , Leukemia, Myeloid, Acute/genetics , Animals , Cell Transformation, Neoplastic/genetics , Chromosomes, Human, Pair 21 , Chromosomes, Human, Pair 8 , Core Binding Factor Alpha 2 Subunit/genetics , Disease Models, Animal , Gene Expression Regulation, Leukemic , Gene Knockout Techniques , Humans , Mice , Mutation , Oncogene Proteins, Fusion/genetics , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , RUNX1 Translocation Partner 1 Protein , Translocation, Genetic
10.
JAMA Oncol ; 1(4): 466-74, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26181256

ABSTRACT

IMPORTANCE: Understanding molecular mechanisms of response and resistance to anticancer therapies requires prospective patient follow-up and clinical and functional validation of both common and low-frequency mutations. We describe a whole-exome sequencing (WES) precision medicine trial focused on patients with advanced cancer. OBJECTIVE: To understand how WES data affect therapeutic decision making in patients with advanced cancer and to identify novel biomarkers of response. DESIGN, SETTING, AND PATIENTS: Patients with metastatic and treatment-resistant cancer were prospectively enrolled at a single academic center for paired metastatic tumor and normal tissue WES during a 19-month period (February 2013 through September 2014). A comprehensive computational pipeline was used to detect point mutations, indels, and copy number alterations. Mutations were categorized as category 1, 2, or 3 on the basis of actionability; clinical reports were generated and discussed in precision tumor board. Patients were observed for 7 to 25 months for correlation of molecular information with clinical response. MAIN OUTCOMES AND MEASURES: Feasibility, use of WES for decision making, and identification of novel biomarkers. RESULTS: A total of 154 tumor-normal pairs from 97 patients with a range of metastatic cancers were sequenced, with a mean coverage of 95X and 16 somatic alterations detected per patient. In total, 16 mutations were category 1 (targeted therapy available), 98 were category 2 (biologically relevant), and 1474 were category 3 (unknown significance). Overall, WES provided informative results in 91 cases (94%), including alterations for which there is an approved drug, there are therapies in clinical or preclinical development, or they are considered drivers and potentially actionable (category 1-2); however, treatment was guided in only 5 patients (5%) on the basis of these recommendations because of access to clinical trials and/or off-label use of drugs. Among unexpected findings, a patient with prostate cancer with exceptional response to treatment was identified who harbored a somatic hemizygous deletion of the DNA repair gene FANCA and putative partial loss of function of the second allele through germline missense variant. Follow-up experiments established that loss of FANCA function was associated with platinum hypersensitivity both in vitro and in patient-derived xenografts, thus providing biologic rationale and functional evidence for his extreme clinical response. CONCLUSIONS AND RELEVANCE: The majority of advanced, treatment-resistant tumors across tumor types harbor biologically informative alterations. The establishment of a clinical trial for WES of metastatic tumors with prospective follow-up of patients can help identify candidate predictive biomarkers of response.


Subject(s)
Biomarkers, Tumor/genetics , DNA Copy Number Variations , DNA Mutational Analysis , Exome , Gene Dosage , Genetic Testing/methods , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Academic Medical Centers , Animals , Computational Biology , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , Feasibility Studies , Female , Humans , INDEL Mutation , Male , Mice , Molecular Targeted Therapy , Neoplasm Metastasis , Neoplasms/pathology , Patient Selection , Precision Medicine , Predictive Value of Tests , Prospective Studies , Time Factors , Treatment Outcome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Mol Genet Genomic Med ; 2(5): 438-50, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25333069

ABSTRACT

To identify previously reported disease mutations that are compatible with extraordinary longevity, we screened the coding regions of the genomes of 44 Ashkenazi Jewish centenarians. Individual genome sequences were generated with 30× coverage on the Illumina HiSeq 2000 and single-nucleotide variants were called with the genome analysis toolkit (GATK). We identified 130 coding variants that were annotated as "pathogenic" or "likely pathogenic" based on the ClinVar database and that are infrequent in the general population. These variants were previously reported to cause a wide range of degenerative, neoplastic, and cardiac diseases with autosomal dominant, autosomal recessive, and X-linked inheritance. Several of these variants are located in genes that harbor actionable incidental findings, according to the recommendations of the American College of Medical Genetics. In addition, we found risk variants for late-onset neurodegenerative diseases, such as the APOE ε4 allele that was even present in a homozygous state in one centenarian who did not develop Alzheimer's disease. Our data demonstrate that the incidental finding of certain reported disease variants in an individual genome may not preclude an extraordinarily long life. When the observed variants are encountered in the context of clinical sequencing, it is thus important to exercise caution in justifying clinical decisions.

12.
Genome Biol ; 15(8): 454, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25164765

ABSTRACT

BACKGROUND: Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors. RESULTS: We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations. CONCLUSIONS: Colorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.


Subject(s)
Colorectal Neoplasms/genetics , GTP Phosphohydrolases/genetics , High-Throughput Nucleotide Sequencing/methods , Membrane Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins/genetics , Sequence Analysis, DNA/methods , ras Proteins/genetics , Adult , Aged , Aged, 80 and over , Alcohol Oxidoreductases/genetics , Colorectal Neoplasms/pathology , Female , Genome, Human , HEK293 Cells , Humans , Male , Middle Aged , Neoplasm Metastasis , Proto-Oncogene Proteins p21(ras)
13.
J Mol Diagn ; 16(1): 89-105, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24211365

ABSTRACT

Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci. We present clinical validation of the assay and a detailed framework for design and validation of similar clinical assays. Deep sequencing of 78 tumor specimens (≥ 1000× average unique coverage across the capture region) achieved high sensitivity for detecting somatic variants at low allele fraction (AF). Validation revealed sensitivities and specificities of 100% for detection of single-nucleotide variants (SNVs) within coding regions, compared with SNP array sequence data (95% CI = 83.4-100.0 for sensitivity and 94.2-100.0 for specificity) or whole-genome sequencing (95% CI = 89.1-100.0 for sensitivity and 99.9-100.0 for specificity) of HapMap samples. Sensitivity for detecting variants at an observed 10% AF was 100% (95% CI = 93.2-100.0) in HapMap mixes. Analysis of 15 masked specimens harboring clinically reported variants yielded concordant calls for 13/13 variants at AF of ≥ 15%. The WUCaMP assay is a robust and sensitive method to detect somatic variants of clinical significance in molecular oncology laboratories, with reduced time and cost of genetic analysis allowing for strategic patient management.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods , Neoplasms/diagnosis , Neoplasms/genetics , Sequence Analysis, DNA/methods , DNA/analysis , Genetic Testing , Genome, Human , Haplotypes/genetics , Humans , Polymorphism, Single Nucleotide , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...