Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Mater ; 35(9): 3722-3730, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37181674

ABSTRACT

Real-time manipulation of light in a diffractive optical element made with an azomaterial, through the light-induced reconfiguration of its surface based on mass transport, is an ambitious goal that may enable new applications and technologies. The speed and the control over photopatterning/reconfiguration of such devices are critically dependent on the photoresponsiveness of the material to the structuring light pattern and on the required extent of mass transport. In this regard, the higher the refractive index (RI) of the optical medium, the lower the total thickness and inscription time can be. In this work, we explore a flexible design of photopatternable azomaterials based on hierarchically ordered supramolecular interactions, used to construct dendrimer-like structures by mixing specially designed sulfur-rich, high-refractive-index photoactive and photopassive components in solution. We demonstrate that thioglycolic-type carboxylic acid groups can be selectively used as part of a supramolecular synthon based on hydrogen bonding or readily converted to carboxylate and participate in a Zn(II)-carboxylate interaction to modify the structure of the material and fine-tune the quality and efficiency of photoinduced mass transport. Compared with a conventional azopolymer, we demonstrate that it is possible to fabricate high-quality, thinner flat diffractive optical elements to reach the desired diffraction efficiency by increasing the RI of the material, achieved by maximizing the content of high molar refraction groups in the chemical structure of the monomers.

2.
Polymers (Basel) ; 15(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050219

ABSTRACT

The measurement of the refractive index typically requires the use of optical ellipsometry which, although potentially very accurate, is extremely sensitive to the structural properties of the sample and its theoretical modeling, and typically requires specialized expertise to obtain reliable output data. Here, we propose a simple diffractive method for the measurement of the refractive index of homogenous solid thin films, which requires only the structuring of the surface of the material to be measured with the profile of a diffraction grating. The refractive index of an exemplary soft-moldable material is successfully estimated over a wide wavelength range by simply incorporating the measured topography and diffraction efficiency of the grating into a convenient scalar theory-based diffraction model. Without the need for specialized expertise and equipment, the method can serve as a simple and widely accessible optical characterization of materials useful in material science and photonics applications.

3.
Opt Express ; 30(8): 12695-12711, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472901

ABSTRACT

Flat optical elements enable the realization of ultra-thin devices able to either reproduce or overcome the functionalities of standard bulky components. The fabrication of these elements involves the structuration of material surfaces on the light wavelength scale, whose geometry has to be carefully designed to achieve the desired optical functionality. In addition to the limits imposed by lithographic design-performance compromises, their optical behavior cannot be accurately tuned afterward, making them difficult to integrate in dynamic optical systems. Here we show the realization of fully reconfigurable flat varifocal diffractive lens, which can be in-place realized, erased and reshaped directly on the surface of an azopolymer film by an all-optical holographic process. Integrating the lens in the same optical system used as standard refractive microscope, results in a hybrid microscope capable of multi-depth object imaging. Our approach demonstrates that reshapable flat optics can be a valid choice to integrate, or even substitute, modern optical systems for advanced functionalities.

4.
J Mater Chem C Mater ; 9(34): 11368-11375, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34594563

ABSTRACT

Here we investigated the role of hydrogen bonding in the design of supramolecular azopolymers with a highly directional and constrained azobenzene-chain interaction involving the aromatic ring of the photoactive molecule, by exploiting the 2-aminopyrimidine/carboxylic acid supramolecular synthon as the tool for molecular recognition. We have shown that this approach is advantageous for producing affordable and versatile photopatternable azomaterials by complexation with polyacrylic acid (PAA). Molecular model complexes were successfully prepared and characterized by X-ray diffraction analysis and FTIR spectroscopy to reveal the multiple, non-ionic interaction occurring between the azobenzene units and the polymer chains. Surface photopatterning of thin films, driven by the typical mass migration phenomenon occurring in azopolymers, resulted strongly enhanced with increasing azobenzene content until equimolar composition. Results show that polymers with synthon-based azobenzenes markedly outperform single H-bonded systems bearing azomolecules with similar structure and electronic properties. We finally demonstrated that the azobenzene units can be easily extracted from a photopatterned film by a simple solvent rinse and without any chemical pre-treatment, leaving the periodicity of the inscribed surface relief gratings unaltered. This result was enabled by the orthogonal solubility of the components in the supramolecular system.

5.
J Funct Biomater ; 11(1)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075063

ABSTRACT

In the last decade, the use of photolithography for the fabrication of structured substrates with controlled morphological patterns that are able to interact with cells at micrometric and nanometric size scales is strongly growing. A promising simple and versatile microfabrication method is based on the physical mass transport induced by visible light in photosensitive azobenzene-containing polymers (or azopolymers). Such light-driven material transport produces a modulation of the surface of the azopolymer film, whose geometry is controlled by the intensity and the polarization distributions of the irradiated light. Herein, two anisotropic structured azopolymer films have been used as substrates to evaluate the effects of topological signals on the in vitro response of human mesenchymal stem cells (hMSCs). The light-induced substrate patterns consist of parallel microgrooves, which are produced in a spatially confined or over large-scale areas of the samples, respectively. The analysis of confocal optical images of the in vitro hMSC cells grown on the patterned films offered relevant information about cell morphology-i.e., nuclei deformation and actin filaments elongation-in relation to the geometry and the spatial extent of the structured area of substrates. The results, together with the possibility of simple, versatile, and cost-effective light-induced structuration of azopolymers, promise the successful use of these materials as anisotropic platforms to study the cell guidance mechanisms governing in vitro tissue formation.

6.
Soft Matter ; 15(45): 9261-9270, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31661109

ABSTRACT

Self-patterning processes originated by physical stimuli have been extensively documented in thin films, whereas spontaneous wrinkling phenomena due to chemical transformation processes are, to the best of our knowledge, unprecedented. Herein we report a case of spontaneous polymerization-driven surface nano-patterning (∼500 nm) that develops in smooth thin solid films of 5,6-dihydroxyindole (DHI), a major precursor of eumelanin polymers, over a time scale of 30 to 60 days in air at room temperature. The phenomenon can be observed only above a critical film thickness of ∼250 nm and it is affected by exposure to ammonia vapors causing acceleration of the oxidation process. The thickness-dependent onset of wrinkling can be attributed to non-homogeneous rates of oxidation through the film causing slow swelling/expansion of the inner layers followed by fast stiffening and cross-linking in the outer layer exposed to higher oxygen levels.

7.
Front Chem ; 7: 407, 2019.
Article in English | MEDLINE | ID: mdl-31231635

ABSTRACT

Hexamethylenediamine (HMDA) and other long chain aliphatic diamines can induce substrate-independent polymer film deposition from dopamine and several other catechols substrates at relatively low concentrations, however the mechanism of the diamine-promoted effect has remained little understood. Herein, we report data indicating that: (a) film deposition from 1 mM HMDA and dopamine is not affected by chemical oxidation with periodate but is markedly inhibited by resorcinol, which also prevents PDA film formation at 10 mM monomer concentration in the absence of HMDA; (b) N-acetylation of HMDA completely inhibits the effect on PDA film formation; (c) HMDA enables surface functionalization with 1 mM 5,6-dihydroxyindole (DHI) polymerization at pH 9.0 in a resorcinol-inhibitable manner. Structural investigation of the polymers produced from dopamine and DHI in the presence of HMDA using solid state 13C and 15N NMR and MALDI-MS suggested formation of covalent cross linked structures. It is concluded that HMDA enhances polydopamine adhesion by acting both on dopamine quinone and downstream, e.g., via covalent coupling with DHI. These results provide new insights into the mechanisms of PDA adhesion and disclose resorcinol as a new potent tool for targeting/mapping quinone intermediates and for controlling polymer growth.

8.
Sci Rep ; 9(1): 6775, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31043674

ABSTRACT

The light-driven superficial structuration observed on the surface of films of azobenzene-containing polymers follows the optical field distribution of the illuminating light pattern, i.e. the light polarization state and the intensity distribution. The ability to precisely manipulate the illuminating intensity pattern can hence provide a new level in the range of complex light-induced superficial textures accessible onto azopolymer film surfaces. In this respect, digital holography, based on the principles of the Computer-Generated Holograms (CGHs), and actually implemented by means of a versatile liquid crystal spatial light modulator, can represent a unique experimental tool in the field of the light-induced mass migration in azo-materials. In the present work, we demonstrate the possibility to precisely control the features and the quality of complex light patterns generated through CGHs in order to induce arbitrarily complex surface reliefs onto the surface of an azopolymer. The results shown here can potentially broaden the range of possible applications of photo-responsive azopolymer films in the fields of surface engineering, biology and photonics.

9.
Biomimetics (Basel) ; 3(3)2018 Sep 13.
Article in English | MEDLINE | ID: mdl-31105248

ABSTRACT

Despite extensive investigations over the past decade, the chemical basis of the extraordinary underwater adhesion properties of polydopamine (PDA) has remained not entirely understood. The bulk of evidence points to PDA wet adhesion as a complex process based on film deposition, and growth in which primary amine groups, besides catechol moieties, play a central role. However, the detailed interplay of chemical interactions underlying the dynamics of film formation has not yet been elucidated. Herein, we report the results of a series of experiments showing that coating formation from dopamine at pH 9.0 in carbonate buffer: (a) Requires high dopamine concentrations (>1 mM); (b) is due to species produced in the early stages of dopamine autoxidation; (c) is accelerated by equimolar amounts of periodate causing fast conversion to the o-quinone; and (d) is enhanced by the addition of hexamethylenediamine (HMDA) and other long chain aliphatic amines even at low dopamine concentrations (<1 mM). It is proposed that concentration-dependent PDA film formation reflects the competition between intermolecular amine-quinone condensation processes, leading to adhesive cross-linked oligomer structures, and the intramolecular cyclization route forming little adhesive 5,6-dihydroxyindole (DHI) units. Film growth would then be sustained by dopamine and other soluble species that can be adsorbed on the surface.

10.
Opt Express ; 25(10): 11530-11549, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28788717

ABSTRACT

We introduce the Holographic - Single Scatterer Localization Microscopy in which we combine dynamical laser speckle illumination with centroid localization of backscattered light spots in order to localize isolated scattering particles. The reconstructed centroid images show very accurate particle localization, with precision much better than the width of diffraction-limited image of the particles recorded by the CCD. Furthermore, the method provides an improved resolution in distinguishing two very close scattering objects compared to the standard laser scanning techniques and can be assimilated to a confocal technique in the ability of light background rejection in three-dimensional disposition of scattering objects. The illumination is controlled via a digital holography setup based on the use of a spatial light modulator. This allows not only a high level of versatility in the illumination patterns, but also the remarkable characteristics of absence of moving mechanical parts, typical of the laser scanning techniques, and the possibility of strongly miniaturizing the setup.

11.
ACS Appl Mater Interfaces ; 9(35): 30133-30142, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28805057

ABSTRACT

The directional light-induced mass migration phenomenon arising in the photoresponsive azobenzene-containing materials has become an increasingly used approach for the fabrication of controlled tridimensional superficial textures. In the present work we demonstrate the tailoring of the superficial wettability of an azopolymer by means of the light-driven reconfiguration of an array of imprinted micropillars. Few simple illumination parameters are controlled to induce nontrivial wetting effects. Wetting anisotropy with controlled directionality, unidirectional spreading, and even polarization-intensity driven two-dimensional paths for wetting anisotropy are obtained starting from a single pristine pillar geometry. The obtained results prove that the versatility of the light-reconfiguration process, together with the possibility of reversible reshaping at reduced costs, represents a valid approach for both applications and fundamental studies in the field of geometry-based wettability of solid surfaces.

12.
Opt Express ; 25(4): 4239, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28241628

ABSTRACT

We would like to clarify our paper [Opt. Express25, 377 (2017)] abstract sentence "These beams carry orbital angular momentum proportional to the number of intertwined helices constituting the wavefront."

13.
Opt Express ; 25(1): 377-393, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-28085832

ABSTRACT

Vortex beams are characterized by a helical wavefront and a phase singularity point on the propagation axis that results in a doughnut-like intensity profile. These beams carry orbital angular momentum proportional to the number of intertwined helices constituting the wavefront. Vortex beams have many applications in optics, such as optical trapping, quantum optics and microscopy. Although beams with such characteristics can be generated holographically, spin-to-orbital angular momentum conversion has attracted considerable interest as a tool to create vortex beams. In this process, the geometrical phase is exploited to create helical beams whose handedness is determined by the circular polarization (left/right) of the incident light, that is by its spin. Here we demonstrate high-efficiency Spin-to-Orbital angular momentum-Converters (SOCs) at visible wavelengths based on dielectric metasurfaces. With these SOCs we generate vortex beams with high and fractional topological charge and show for the first time the simultaneous generation of collinear helical beams with different and arbitrary orbital angular momentum. This versatile method of creating vortex beams, which circumvents the limitations of liquid crystal SOCs and adds new functionalities, should significantly expand the applications of these beams.

SELECTION OF CITATIONS
SEARCH DETAIL
...