Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 40(3): 2471-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24827147

ABSTRACT

Although the accumulation of the neurotoxic peptide ß-amyloid (Aß) in the central nervous system is a hallmark of Alzheimer's disease, whether Aß acts in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that cytosolic Ca(2+) dysregulation, induced by a neurotoxic fragment (Aß25-35), caused apoptosis in a concentration-dependent manner, leading to cytoplasmic Ca(2+) mobilization from extra- and intracellular sources, mainly from the endoplasmic reticulum (ER) via IP3 receptor activation. This mechanism was related to Aß-mediated apoptosis by the intrinsic pathway because the expression of pro-apoptotic Bax was accompanied by its translocation in cells transfected with GFP-Bax. Aß-mediated apoptosis was reduced by BAPTA-AM, a fast Ca(2+) chelator, indicating that an increase in intracellular Ca(2+) was involved in cell death. Interestingly, the Bax translocation was dependent on Ca(2+) mobilization from IP3 receptors because pre-incubation with xestospongin C, a selective IP3 receptor inhibitor, abolished this response. Taken together, these results provide evidence that Aß dysregulation of Ca(2+) homeostasis induces ER depletion of Ca(2+) stores and leads to apoptosis; this mechanism plays a significant role in Aß apoptotic cell death and might be a new target for neurodegeneration treatments.


Subject(s)
Amyloid beta-Peptides/pharmacology , Apoptosis/drug effects , Astrocytes/drug effects , Astrocytes/metabolism , Calcium Signaling/drug effects , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Peptide Fragments/pharmacology , Alzheimer Disease/metabolism , Animals , Cells, Cultured , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Rats , Signal Transduction
2.
Curr Pharm Des ; 17(35): 3865-77, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21933141

ABSTRACT

Glutamate is an important neurotransmitter in neurons and glial cells and it is one of the keys to the neuron-glial interaction in the brain. Glutamate transmission is strongly dependent on calcium homeostasis and on mitochondrial function. In the present work we presented several aspects related to the role of mitochondria in glutamate signaling and in brain diseases. We focused on glutamateinduced calcium signaling and its relation to the organelle dysfunction with cell death processes. In addition, we have discussed how alterations in this pathway may lead or aggravate a variety of neurodegenerative diseases. We compiled information on how mitochondria can influence cell fate during glutamate stimulation and calcium signaling. These organelles play a pivotal role in neuron and glial exchange, in synaptic plasticity and several pathological conditions related to Aging, Alzheimer's, Parkinson's and Huntington's diseases. We have also presented autophagy as a mechanism activated during mitochondrial dysfunction which may function as a protective mechanism during injury. Furthermore, some new perspectives and approaches to treat these neurodegenerative diseases are offered and evaluated.


Subject(s)
Energy Metabolism , Glutamic Acid/metabolism , Mitochondria/metabolism , Neuroglia/metabolism , Neurons/metabolism , Synaptic Transmission , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Autophagy/drug effects , Calcium Signaling/drug effects , Energy Metabolism/drug effects , Excitatory Amino Acid Agents/metabolism , Excitatory Amino Acid Agents/pharmacology , Humans , Huntington Disease/drug therapy , Huntington Disease/metabolism , Mitochondria/drug effects , Neuroglia/drug effects , Neuronal Plasticity/drug effects , Neurons/drug effects , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/prevention & control , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...