Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Mediterr J Hematol Infect Dis ; 3(1): e2011045, 2011.
Article in English | MEDLINE | ID: mdl-22110895

ABSTRACT

Balanced chromosomal translocations that generate chimeric oncoproteins are considered to be initiating lesions in the pathogenesis of acute myeloid leukemia. The most frequent is the t(15;17)(q22;q21), which fuses the PML and RARA genes, giving rise to acute promyelocytic leukemia (APL). An increasing proportion of APL cases are therapy-related (t-APL), which develop following exposure to radiotherapy and/or chemotherapeutic agents that target DNA topoisomerase II (topoII), particularly mitoxantrone and epirubicin. To gain insights into molecular mechanisms underlying the formation of the t(15;17) we mapped the translocation breakpoints in a series of t-APLs, which revealed significant clustering according to the nature of the drug exposure. Remarkably, in approximately half of t-APL cases arising following mitoxantrone treatment for breast cancer or multiple sclerosis, the chromosome 15 breakpoint fell within an 8-bp "hotspot" region in PML intron 6, which was confirmed to be a preferential site of topoII-mediated DNA cleavage induced by mitoxantrone. Chromosome 15 breakpoints falling outside the "hotspot", and the corresponding RARA breakpoints were also shown to be functional topoII cleavage sites. The observation that particular regions of the PML and RARA loci are susceptible to topoII-mediated DNA damage induced by epirubicin and mitoxantrone may underlie the propensity of these agents to cause APL.

2.
Curr Med Chem Anticancer Agents ; 5(4): 363-72, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16101488

ABSTRACT

Etoposide is an important chemotherapeutic agent that is used to treat a wide spectrum of human cancers. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and overwinding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Given the central role of topoisomerase II in both the cure and initiation of human cancers, it is imperative to further understand the mechanism by which the enzyme cleaves and rejoins the double helix and the process by which etoposide and other anticancer drugs alter topoisomerase II function.


Subject(s)
DNA Topoisomerases, Type II/metabolism , Etoposide/therapeutic use , Neoplasms/drug therapy , Animals , DNA Damage/drug effects , Etoposide/adverse effects , Etoposide/chemistry , Humans , Neoplasms/chemically induced , Neoplasms/enzymology , Neoplasms/genetics , Structure-Activity Relationship , Topoisomerase II Inhibitors
3.
Nucleic Acids Res ; 33(3): 1021-30, 2005.
Article in English | MEDLINE | ID: mdl-15718301

ABSTRACT

The cleavage reaction of topoisomerase II, which creates double-stranded DNA breaks, plays a central role in both the cure and initiation of cancer. Therefore, it is important to understand the cellular processes that repair topoisomerase II-generated DNA damage. Using a genome-wide approach with Saccharomyces cerevisiae, we found that Deltamre11, Deltaxrs2, Deltarad50, Deltarad51, Deltarad52, Deltarad54, Deltarad55, Deltarad57 and Deltamms22 strains were hypersensitive to etoposide, a drug that specifically increases levels of topoisomerase II-mediated DNA breaks. These results confirm that the single-strand invasion pathway of homologous recombination is the major pathway that repairs topoisomerase II-induced DNA damage in yeast and also indicate an important role for Mms22p. Although Deltamms22 strains are sensitive to several DNA-damaging agents, little is known about the function of Mms22p. Deltamms22 cultures accumulate in G2/M, and display an abnormal cell cycle response to topoisomerase II-mediated DNA damage. MMS22 appears to function outside of the single-strand invasion pathway, but levels of etoposide-induced homologous recombination in Deltamms22 cells are lower than wild-type. MMS22 is epistatic with RTT101 and RTT107, genes that encode its protein binding partners. Finally, consistent with a role in DNA processes, Mms22p localizes to discrete nuclear foci, even in the absence of etoposide or its binding partners.


Subject(s)
DNA Damage , DNA Repair , DNA Topoisomerases, Type II/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/genetics , Cell Cycle , Cell Nucleus/chemistry , Cullin Proteins/genetics , Etoposide/toxicity , Gene Deletion , Recombination, Genetic , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae Proteins/genetics
4.
J Biol Chem ; 276(49): 46290-6, 2001 Dec 07.
Article in English | MEDLINE | ID: mdl-11591703

ABSTRACT

Abasic sites are the most commonly formed DNA lesions in the cell and are produced by numerous endogenous and environmental insults. In addition, they are generated by the initial step of base excision repair (BER). When located within a topoisomerase II DNA cleavage site, "intact" abasic sites act as topoisomerase II poisons and dramatically stimulate enzyme-mediated DNA scission. However, most abasic sites in cells are not intact. They exist as processed BER intermediates that contain DNA strand breaks proximal to the damaged residue. When strand breaks are located within a topoisomerase II DNA cleavage site, they create suicide substrates that are not religated readily by the enzyme and can generate permanent double-stranded DNA breaks. Consequently, the effects of processed abasic sites on DNA cleavage by human topoisomerase IIalpha were examined. Unlike substrates with intact abasic sites, model BER intermediates containing 5'- or 3'-nicked abasic sites or deoxyribosephosphate flaps were suicide substrates. Furthermore, abasic sites flanked by 5'- or 3'-nicks were potent topoisomerase II poisons, enhancing DNA scission approximately 10-fold compared with corresponding nicked oligonucleotides that lacked abasic sites. These findings suggest that topoisomerase II is able to convert processed BER intermediates to permanent double-stranded DNA breaks.


Subject(s)
DNA Repair , Enzyme Inhibitors/pharmacology , Topoisomerase II Inhibitors , Antigens, Neoplasm , DNA/metabolism , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins , Humans , Hydrolysis , Kinetics , Substrate Specificity
5.
Proc Natl Acad Sci U S A ; 98(17): 9802-7, 2001 Aug 14.
Article in English | MEDLINE | ID: mdl-11493704

ABSTRACT

We analyzed the der(11) and der(4) genomic breakpoint junctions of a t(4;11) in the leukemia of a patient previously administered etoposide and dactinomycin by molecular and biochemical approaches to gain insights about the translocation mechanism and the relevant drug exposure. The genomic breakpoint junctions were amplified by PCR. Cleavage of DNA substrates containing the normal homologues of the MLL and AF-4 translocation breakpoints was examined in vitro upon incubation with human DNA topoisomerase IIalpha and etoposide, etoposide catechol, etoposide quinone, or dactinomycin. The der(11) and der(4) genomic breakpoint junctions both involved MLL intron 6 and AF-4 intron 3. Recombination was precise at the sequence level except for the overall gain of a single templated nucleotide. The translocation breakpoints in MLL and AF-4 were DNA topoisomerase II cleavage sites. Etoposide and its metabolites, but not dactinomycin, enhanced cleavage at these sites. Assuming that DNA topoisomerase II was the mediator of the breakage, processing of the staggered nicks induced by DNA topoisomerase II, including exonucleolytic deletion and template-directed polymerization, would have been required before ligation of the ends to generate the observed genomic breakpoint junctions. These data are inconsistent with a translocation mechanism involving interchromosomal recombination by simple exchange of DNA topoisomerase II subunits and DNA-strand transfer; however, consistent with reciprocal DNA topoisomerase II cleavage events in MLL and AF-4 in which both breaks became stable, the DNA ends were processed and underwent ligation. Etoposide and/or its metabolites, but not dactinomycin, likely were the relevant exposures in this patient.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chromosome Breakage , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 4/genetics , DNA Topoisomerases, Type II/metabolism , Dactinomycin/adverse effects , Etoposide/adverse effects , Isoenzymes/metabolism , Neoplasms, Second Primary/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogenes , Recombination, Genetic , Transcription Factors , Translocation, Genetic/genetics , Antigens, Neoplasm , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Catechols/pharmacology , Child , Chromosomes, Human, Pair 11/ultrastructure , Chromosomes, Human, Pair 4/ultrastructure , Combined Modality Therapy , Cyclophosphamide/administration & dosage , DNA, Neoplasm/drug effects , DNA-Binding Proteins/genetics , Dactinomycin/administration & dosage , Dactinomycin/pharmacology , Etoposide/administration & dosage , Etoposide/pharmacology , Female , Histone-Lysine N-Methyltransferase , Humans , Ifosfamide/administration & dosage , Models, Genetic , Molecular Sequence Data , Myeloid-Lymphoid Leukemia Protein , Neoplasm Proteins/metabolism , Neoplasms, Second Primary/chemically induced , Nuclear Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/chemically induced , Radiotherapy, Adjuvant , Rhabdomyosarcoma, Alveolar/drug therapy , Rhabdomyosarcoma, Alveolar/radiotherapy , Soft Tissue Neoplasms/drug therapy , Soft Tissue Neoplasms/radiotherapy , Transcriptional Elongation Factors , Vincristine/administration & dosage
6.
Biochemistry ; 40(28): 8410-8, 2001 Jul 27.
Article in English | MEDLINE | ID: mdl-11444988

ABSTRACT

A common DNA religation assay for topoisomerase II takes advantage of the fact that the enzyme can rejoin cleaved nucleic acids but cannot mediate DNA scission at suboptimal temperatures (either high or low). Although temperature-induced DNA religation assays have provided valuable mechanistic information for several type II enzymes, high-temperature shifts have not been examined for human topoisomerase IIalpha. Therefore, the effects of temperature on the DNA cleavage/religation activity of the enzyme were characterized. Human topoisomerase IIalpha undergoes two distinct transitions at high temperatures. The first transition occurs between 45 and 55 degrees C and is accompanied by a 6-fold increase in the level of DNA cleavage at 60 degrees C. It also leads to a loss of DNA strand passage activity, due primarily to an inability of ATP to convert the enzyme to a protein clamp. The enzyme alterations that accompany the first transition appear to be stable and do not revert at lower temperature. The second transition in human topoisomerase IIalpha occurs between 65 and 70 degrees C and correlates with a precipitous drop in the level of DNA scission. At 75 degrees C, cleavage falls well below amounts seen at 37 degrees C. This loss of DNA scission appears to result from a decrease in the forward rate of DNA cleavage rather than an increase in the religation rate. Finally, similar high-temperature alterations were observed for yeast topoisomerase II and human topoisomerase IIbeta, suggesting that parallel heat-induced transitions may be widespread among type II topoisomerases.


Subject(s)
DNA Topoisomerases, Type II/metabolism , Hot Temperature , Isoenzymes/metabolism , Antigens, Neoplasm , Catalysis , DNA Damage , DNA Repair , DNA, Superhelical/metabolism , DNA-Binding Proteins , Enzyme Stability , Humans , Hydrolysis , Saccharomyces cerevisiae/enzymology
7.
J Biol Chem ; 276(21): 17727-31, 2001 May 25.
Article in English | MEDLINE | ID: mdl-11359787

ABSTRACT

Despite the importance of the topoisomerase II DNA cleavage/rejoining cycle to genomic integrity, the mechanistic details of religation are poorly understood. Topoisomerase II utilizes covalent protein-DNA interactions to align the 5'-termini of cleaved DNA for religation. However, because the enzyme does not form covalent bonds with the 3'-DNA termini, the basis for the alignment of the 3'-ends is less clear. Three major possibilities exist. The 3'-termini may be positioned for religation (i) by base pairing to their complementary DNA strands, (ii) by base stacking to the adjacent residues, or (iii) by noncovalent interactions with topoisomerase II. To distinguish between these possibilities, the ability of human topoisomerase IIalpha to religate a series of oligonucleotides with altered base pairing or base stacking at their 3'-termini was determined. Substrates containing modifications that disrupted terminal base pairing or base stacking with-out affecting the 3'-terminal base were resealed at wild-type rates. In contrast, substrates that lacked the terminal base (or contained an altered base) displayed very low rates of religation. On the basis of these results, we propose that topoisomerase II positions the 3'-DNA termini for religation through noncovalent protein-DNA contacts.


Subject(s)
DNA Topoisomerases, Type II/genetics , DNA/genetics , Binding Sites , DNA/metabolism , DNA Replication , DNA Topoisomerases, Type II/metabolism , Humans , Protein Binding
8.
J Biol Chem ; 276(26): 24401-8, 2001 Jun 29.
Article in English | MEDLINE | ID: mdl-11323425

ABSTRACT

Chlorella virus PBCV-1 topoisomerase II is the only functional type II enzyme known to be encoded by a virus that infects eukaryotic cells. However, it has not been established whether the protein is expressed following viral infection or whether the enzyme has any catalytic features that distinguish it from cellular type II topoisomerases. Therefore, the present study characterized the physiological expression of PBCV-1 topoisomerase II and individual reaction steps catalyzed by the enzyme. Results indicate that the topoisomerase II gene is widely distributed among Chlorella viruses and that the protein is expressed 60-90 min after viral infection of algal cells. Furthermore, the enzyme has an extremely high DNA cleavage activity that sets it apart from all known eukaryotic type II topoisomerases. Levels of DNA scission generated by the viral enzyme are approximately 30 times greater than those observed with human topoisomerase IIalpha. The high levels of cleavage are not due to inordinately tight enzyme-DNA binding or to impaired DNA religation. Thus, they most likely reflect an elevated forward rate of scission. The robust DNA cleavage activity of PBCV-1 topoisomerase II provides a unique tool for studying the catalytic functions of type II topoisomerases.


Subject(s)
Chlorella/virology , DNA Topoisomerases, Type II/metabolism , Phycodnaviridae/enzymology , Adenosine Triphosphate/metabolism , Antineoplastic Agents/pharmacology , Cations/chemistry , DNA/metabolism , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Etoposide/pharmacology , Genes, Viral , Humans , RNA, Viral/biosynthesis , Topoisomerase II Inhibitors , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Curr Pharm Des ; 7(5): 337-53, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11254893

ABSTRACT

Quinolones are a very important family of antibacterial agents that are widely prescribed for the treatment of infections in humans. Although the founding members of this drug class had little clinical impact, successive generations include the most active and broad spectrum oral antibacterials currently in use. In contrast to most other anti-infective drugs, quinolones do not kill bacteria by inhibiting a critical cellular process. Rather, they corrupt the activities of two essential enzymes, DNA gyrase and topoisomerase IV, and induce them to kill cells by generating high levels of double-stranded DNA breaks. A second unique aspect of quinolones is their differential ability to target these two enzymes in different bacteria. Depending upon the bacterial species and quinolone employed, either DNA gyrase or topoisomerase IV serves as the primary cytotoxic target of drug action. While this unusual feature initially stymied development of quinolones with high activity against Gram-positive bacteria, it ultimately opened new vistas for the clinical use of this drug class. In addition to the antibacterial quinolones, specific members of this drug family display high activity against eukaryotic type II topoisomerases, as well as cultured mammalian cells and in vivo tumor models. These antineoplastic quinolones represent a potentially important source of new anticancer agents and provide an opportunity to examine drug mechanism across divergent species. Because of the clinical importance of quinolones, this review will discuss the mechanistic basis for drug efficacy and interactions between these compounds and their topoisomerase targets.


Subject(s)
Anti-Infective Agents/pharmacology , DNA Topoisomerases, Type II/drug effects , 4-Quinolones , Antineoplastic Agents/pharmacology , DNA Damage , DNA Topoisomerase IV , DNA Topoisomerases, Type II/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects
10.
Biochemistry ; 40(3): 712-8, 2001 Jan 23.
Article in English | MEDLINE | ID: mdl-11170388

ABSTRACT

TOP-53 is a promising anticancer agent that displays high activity against non-small cell lung cancer in animal tumor models [Utsugi, T., et al. (1996) Cancer Res. 56, 2809-2814]. Compared to its parent compound, etoposide, TOP-53 is considerably more toxic to non-small cell lung cancer cells, is more active at generating chromosomal breaks, and displays improved cellular uptake and pharmacokinetics in animal lung tissues. Despite the preclinical success of TOP-53, several questions remain regarding its cytotoxic mechanism. Therefore, this study characterized the basis for drug action. Results indicate that topoisomerase II is the primary cytotoxic target for TOP-53. Furthermore, the drug kills cells by acting as a topoisomerase II poison. TOP-53 exhibits a DNA cleavage site specificity that is identical to that of etoposide. Like its parent compound, the drug increases the number of enzyme-mediated DNA breaks by interfering with the DNA religation activity of the enzyme. TOP-53 is considerably more efficient than etoposide at enhancing topoisomerase II-mediated DNA cleavage and exhibits high activity against human topoisomerase IIalpha and IIbeta in vitro and in cultured cells. Therefore, at least in part, the enhanced cytotoxic activity of TOP-53 can be attributed to an enhanced activity against topoisomerase II. Finally, TOP-53 displays nearly wild-type activity against a mutant yeast type II enzyme that is highly resistant to etoposide. This finding suggests that TOP-53 can retain activity against systems that have developed resistance to etoposide, and indicates that substituents on the etoposide C-ring are important for topoisomerase II-drug interactions.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , DNA Topoisomerases, Type II , DNA Topoisomerases, Type II/metabolism , Etoposide/analogs & derivatives , Etoposide/toxicity , Topoisomerase II Inhibitors , Antigens, Neoplasm , DNA Damage/drug effects , DNA Ligases/antagonists & inhibitors , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/physiology , DNA, Fungal/metabolism , DNA-Binding Proteins , Humans , Hydrolysis/drug effects , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Isoenzymes/physiology , Mutagenesis, Site-Directed , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Structure-Activity Relationship , Tumor Cells, Cultured
11.
Biochemistry ; 40(5): 1159-70, 2001 Feb 06.
Article in English | MEDLINE | ID: mdl-11170441

ABSTRACT

Chromosomal breakage resulting from stabilization of DNA topoisomerase II covalent complexes by epipodophyllotoxins may play a role in the genesis of leukemia-associated MLL gene translocations. We investigated whether etoposide catechol and quinone metabolites can damage the MLL breakpoint cluster region in a DNA topoisomerase II-dependent manner like the parent drug and the nature of the damage. Cleavage of two DNA substrates containing the normal homologues of five MLL intron 6 translocation breakpoints was examined in vitro upon incubation with human DNA topoisomerase IIalpha, ATP, and either etoposide, etoposide catechol, or etoposide quinone. Many of the same cleavage sites were induced by etoposide and by its metabolites, but several unique sites were induced by the metabolites. There was a preference for G(-1) among the unique sites, which differs from the parent drug. Cleavage at most sites was greater and more heat-stable in the presence of the metabolites compared to etoposide. The MLL translocation breakpoints contained within the substrates were near strong and/or stable cleavage sites. The metabolites induced more cleavage than etoposide at the same sites within a 40 bp double-stranded oligonucleotide containing two of the translocation breakpoints, confirming the results at a subset of the sites. Cleavage assays using the same oligonucleotide substrate in which guanines at several positions were replaced with N7-deaza guanines indicated that the N7 position of guanine is important in metabolite-induced cleavage, possibly suggesting N7-guanine alkylation by etoposide quinone. Not only etoposide, but also its metabolites, enhance DNA topoisomerase II cleavage near MLL translocation breakpoints in in vitro assays. It is possible that etoposide metabolites may be relevant to translocations.


Subject(s)
Chromosome Breakage , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/genetics , Etoposide/metabolism , Etoposide/pharmacology , Leukemia, Lymphoid/genetics , Leukemia, Myeloid/genetics , Proto-Oncogenes , Transcription Factors , Translocation, Genetic/drug effects , Catechols/metabolism , Catechols/pharmacology , DNA Damage , Enzyme Stability/drug effects , Etoposide/analogs & derivatives , Histone-Lysine N-Methyltransferase , Humans , Introns/drug effects , Myeloid-Lymphoid Leukemia Protein , Oligonucleotides/metabolism , Quinones/metabolism , Quinones/pharmacology , Substrate Specificity/drug effects
16.
Cancer Res ; 60(15): 4077-84, 2000 Aug 01.
Article in English | MEDLINE | ID: mdl-10945613

ABSTRACT

TAS-103 is a DNA intercalating indeno-quinoline derivative that stimulates DNA cleavage by topoisomerases. This synthetic drug has a broad spectrum of antitumor activity against many human solid tumor xenografts and is currently undergoing clinical trials. We investigated the induction of apoptosis in human promyelocytic leukemia cells treated with TAS-103. The treatment of proliferating human leukemia cells for 24 h with various concentrations of the drug induces significant variations in the mitochondrial transmembrane potential (delta(psi)mt) measured by flow cytometry using the fluorochromes 3,3-dihexyloxacarbocyanine iodide, Mitotracker Red, and tetrachloro-tetraethylbenzimidazolcarbocyanine iodide. The collapse of delta(psi)mt is accompanied by a marked decrease of the intracellular pH. Cleavage experiments with the substrates N-acetyl-Asp-Glu-Val-Asp-pNA, poly(ADP-ribose) polymerase, and pro-caspase-3 reveal unambiguously that caspase-3 is a key mediator of the apoptotic pathway induced by TAS-103. Caspase-8 is also cleaved, and the bcl-2 oncoprotein is underexpressed. Drug-induced internucleosomal DNA fragmentation and the externalization of phosphatidylserine residues in the outer leaflet of the plasma membrane were also characterized. The cell cycle perturbations produced by TAS-103 can be connected with the changes in deltapsi(mt). At low concentrations (2-25 nM), the drug induces a marked G2 arrest and concomitantly provokes an increase in the potential of mitochondrial membranes. In contrast, treatment of the HL-60 cells with higher drug concentrations (50 nM to 1 microM) triggers massive apoptosis and a collapse of deltaP(mt) that is a signature for the opening of the mitochondrial permeability transition pores. The discovery of a correlation between the G2 arrest and changes in mitochondrial membrane potential provides an important mechanistic insight into the action of TAS-103.


Subject(s)
Aminoquinolines/toxicity , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Indenes/toxicity , Intercalating Agents/toxicity , Apoptosis/physiology , Caspase 3 , Caspases/metabolism , Cell Cycle/drug effects , DNA Fragmentation/drug effects , Enzyme Activation , Enzyme Activators/toxicity , Flow Cytometry , HL-60 Cells/drug effects , HL-60 Cells/pathology , Humans , Hydrogen-Ion Concentration , Intracellular Membranes/drug effects , Intracellular Membranes/physiology , Membrane Potentials/drug effects , Mitochondria/drug effects , Mitochondria/physiology , Phosphatidylserines/metabolism , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Signal Transduction/drug effects , Signal Transduction/physiology
17.
Curr Biol ; 10(15): 923-6, 2000.
Article in English | MEDLINE | ID: mdl-10959840

ABSTRACT

Apoptotic execution is characterized by dramatic changes in nuclear structure accompanied by cleavage of nuclear proteins by caspases (reviewed in [1]). Cell-free extracts have proved useful for the identification and functional characterization of activities involved in apoptotic execution [2-4] and for the identification of proteins cleaved by caspases [5]. More recent studies have suggested that nuclear disassembly is driven largely by factors activated downstream of caspases [6]. One such factor, the caspase-activated DNase, CAD/CPAN/DFF40 [4,7,8] (CAD) can induce apoptotic chromatin condensation in isolated HeLa cell nuclei in the absence of other cytosolic factors [6,8]. As chromatin condensation occurs even when CAD activity is inhibited, however, CAD cannot be the sole morphogenetic factor triggered by caspases [6]. Here we show that DNA topoisomerase IIalpha (Topo IIalpha), which is essential for both condensation and segregation of daughter chromosomes in mitosis [9], also functions during apoptotic execution. Simultaneous inhibition of Topo IIalpha and caspases completely abolishes apoptotic chromatin condensation. In addition, we show that CAD binds to Topo IIalpha, and that their association enhances the decatenation activity of Topo IIalpha in vitro.


Subject(s)
Apoptosis , Chromatin/metabolism , DNA Topoisomerases, Type II , DNA Topoisomerases, Type II/metabolism , Deoxyribonucleases/metabolism , Isoenzymes/metabolism , Animals , Antigens, Neoplasm , Caspase Inhibitors , Cell Line , Chickens , Chromatin/chemistry , DNA Topoisomerases, Type II/chemistry , DNA-Binding Proteins , Deoxyribonucleases/chemistry , HeLa Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Protein Binding , Topoisomerase II Inhibitors
18.
Nucleic Acids Res ; 28(9): 1947-54, 2000 May 01.
Article in English | MEDLINE | ID: mdl-10756196

ABSTRACT

Type II topoisomerases are essential enzymes that are also the primary cellular targets for a number of important anticancer drugs. These drugs act by increasing levels of topoisomerase II-mediated DNA cleavage. Recent studies indicate that endogenous forms of DNA damage, such as abasic sites and base mismatches, also stimulate the DNA scission activity of the enzyme. To extend our understanding of how type II topoisomerases react to DNA damage, the effects of abasic sites, and oxidized and alkylated bases on DNA cleavage mediated by human topo-isomerase IIalpha and beta were determined. Based on experiments that incorporated random abasic sites into plasmid DNA, human type II enzymes can locate lesions even within a background of several thousand undamaged base pairs. As determined by experiments that utilized site-specific forms of DNA lesions, oxidized or monoalkylated purines that allow base pairing and induce little distortion in the double helix have modest effects on topoisomerase II-mediated DNA cleavage. In contrast, 1,N(6)-ethenoadenine, a bulky lesion that disrupts base pairing, enhanced DNA cleavage approximately 10-fold. 1,N(6)-Ethenoadenine is the first lesion found to rival the stimulatory effects of apurinic sites on the DNA scission activity of eukaryotic type II topoisomerases.


Subject(s)
DNA Damage , DNA Topoisomerases, Type II/metabolism , Adenine/analogs & derivatives , Adenine/metabolism , Alkylation , Apurinic Acid/metabolism , Base Sequence , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Adducts/chemistry , DNA Adducts/metabolism , DNA Repair , DNA-Binding Proteins , Guanine/analogs & derivatives , Guanine/metabolism , Humans , Isoenzymes/metabolism , Mutation , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Oxidation-Reduction , Plasmids/chemistry , Plasmids/genetics , Plasmids/metabolism , Sensitivity and Specificity
19.
J Biol Chem ; 275(17): 13041-8, 2000 Apr 28.
Article in English | MEDLINE | ID: mdl-10777608

ABSTRACT

The DNA strand passage activity of eukaryotic topoisomerase II relies on a cascade of conformational changes triggered by ATP binding to the N-terminal domain of the enzyme. To investigate the interdomain communication between the ATPase and cleavage/religation domains of human topoisomerase IIalpha, we characterized a mutant enzyme that contains a deletion at the interface between the two domains, covering amino acids 350-407. The ATPase domain retained full activity with a rate of ATP hydrolysis that was severalfold higher than normal, but the ATPase activity was unaffected by DNA. The cleavage and religation activities of the enzyme were comparable with those of the wild-type enzyme both in the absence and presence of cancer chemotherapeutic agents. However, neither ATP nor a nonhydrolyzable ATP analog stimulated cleavage complex formation. Although both conserved domains retained full activity, the mutant enzyme was unable to coordinate these activities into strand passage. Our findings suggest that the normal conformational transitions occurring in the enzyme upon ATP binding are hampered or lacking in the mutant enzyme. Consistent with this hypothesis, the enzyme displayed an abnormal clamp closing activity. In summary, the region covering amino acids 350-407 in human topoisomerase IIalpha seems to be essential for correct interdomain communication and probably is involved in signaling ATP binding to the rest of the enzyme.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA Topoisomerases, Type II , DNA Topoisomerases, Type II/metabolism , Isoenzymes/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/metabolism , Antigens, Neoplasm , Conserved Sequence , DNA/metabolism , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/genetics , DNA, Superhelical/metabolism , DNA-Binding Proteins , Gene Deletion , Genetic Complementation Test , Humans , Hydrolysis , Isoenzymes/chemistry , Isoenzymes/genetics , Mutagenesis , Plasmids , Protein Conformation , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Time Factors
20.
Article in English | MEDLINE | ID: mdl-10697411

ABSTRACT

Topoisomerase II is an essential enzyme that plays a role in virtually every cellular DNA process. This enzyme interconverts different topological forms of DNA by passing one nucleic acid segment through a transient double-stranded break generated in a second segment. By virtue of its double-stranded DNA passage reaction, topoisomerase II is able to regulate DNA over- and underwinding, and can resolve knots and tangles in the genetic material. Beyond the critical physiological functions of the eukaryotic enzyme, topoisomerase II is the target for some of the most successful anticancer drugs used to treat human malignancies. These agents are referred to as topoisomerase II poisons, because they transform the enzyme into a potent cellular toxin. Topoisomerase II poisons act by increasing the concentration of covalent enzyme-cleaved DNA complexes that normally are fleeting intermediates in the catalytic cycle of topoisomerase II. As a result of their action, these drugs generate high levels of enzyme-mediated breaks in the genetic material of treated cells and ultimately trigger cell death pathways. Topoisomerase II is also the target for a second category of drugs referred to as catalytic inhibitors. Compounds in this category prevent topoisomerase II from carrying out its required physiological functions. Drugs from both categories vary widely in their mechanisms of actions. This review focuses on topoisomerase II function and how drugs alter the catalytic cycle of this important enzyme.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , Enzyme Inhibitors/pharmacology , Topoisomerase II Inhibitors , Animals , Antineoplastic Agents/chemistry , Binding Sites , Biological Evolution , DNA Topoisomerases, Type II/chemistry , DNA, Neoplasm/metabolism , Drug Resistance , Enzyme Inhibitors/chemistry , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Models, Biological , Neoplasms/drug therapy , Neoplasms/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...