Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Justice ; 62(4): 433-447, 2022 07.
Article in English | MEDLINE | ID: mdl-35931449

ABSTRACT

The forensic scenario, on which the round robin study was based, simulated a suspected intentional manipulation of a real estate rental agreement consisting of a total of three pages. The aims of this study were to (i) establish the amount and reliability of information extractable from a single type of evidence and to (ii) provide suggestions on the most suitable combination of compatible techniques for a multi-modal imaging approach to forgery detection. To address these aims, seventeen laboratories from sixteen countries were invited to answer the following tasks questions: (i) which printing technique was used? (ii) were the three pages printed with the same printer? (iii) were the three pages made from the same paper? (iv) were the three pages originally stapled? (v) were the headings and signatures written with the same ink? and (vi) were headings and signatures of the same age on all pages? The methods used were classified into the following categories: Optical spectroscopy, including multispectral imaging, smartphone mapping, UV-luminescence and LIBS; Infrared spectroscopy, including Raman and FTIR (micro-)spectroscopy; X-ray spectroscopy, including SEM-EDX, PIXE and XPS; Mass spectrometry, including ICPMS, SIMS, MALDI and LDIMS; Electrostatic imaging, as well as non-imaging methods, such as non-multimodal visual inspection, (micro-)spectroscopy, physical testing and thin layer chromatography. The performance of the techniques was evaluated as the proportion of discriminated sample pairs to all possible sample pairs. For the undiscriminated sample pairs, a distinction was made between undecidability and false positive claims. It was found that none of the methods used were able to solve all tasks completely and/or correctly and that certain methods were a priori judged unsuitable by the laboratories for some tasks. Correct results were generally achieved for the discrimination of printer toners, whereas incorrect results in the discrimination of inks. For the discrimination of paper, solid state analytical methods proved to be superior to mass spectrometric methods. None of the participating laboratories deemed addressing ink age feasible. It was concluded that correct forensic statements can only be achieved by the complementary application of different methods and that the classical approach of round robin studies to send standardised subsamples to the participants is not feasible for a true multimodal approach if the techniques are not available at one location.


Subject(s)
Forensic Medicine , Ink , Forensic Medicine/methods , Humans , Laboratories , Mass Spectrometry , Reproducibility of Results
2.
J Biomed Opt ; 27(2)2022 02.
Article in English | MEDLINE | ID: mdl-35191236

ABSTRACT

SIGNIFICANCE: Multispectral imaging enables mapping of chromophore content changes in skin neoplasms, which helps to diagnose a pathology. Different types of light sources can be used for the imaging. Design of laser-based illuminators is more complicated and, consequently, they are more expensive than LED-based illuminators. On the other hand, spectral line illumination has the advantage of less complicated calculations, since only the discrete maximum wavelengths need to be considered. Spectral band and spectral line approaches for multispectral skin diagnostics have not been compared so far. This can help to evaluate the accuracy and effectiveness of both approaches. AIM: To compare two specific illumination modalities-spectral band and spectral line illumination-from the point of performance for mapping of in vivo skin chromophores. APPROACH: Three spectral images of the same skin malformations were captured by a smartphone RGB camera with two different add-on illuminators comprising LED emitters and laser emitters, respectively. Five types of benign skin neoplasms were included in our study. Concentrations of skin melanin, oxy- and deoxy-hemoglobin at image pixel groups were calculated using the Beer-Lambert law. RESULTS: Skin chromophore maps and statistical analysis of mean concentrations' changes in the neoplasms compared to the surrounding skin are presented and discussed. The data of the laser emitters led to significantly higher (∼10 times) increase of the oxy-hemoglobin values in vascular neoplasms and much lower deoxy-hemoglobin values, if compared to the data obtained by the LED emitters. CONCLUSIONS: Analysis of the obtained chromophore distribution maps and concentration variations in neoplasms led to conclusion that the spectral line illumination approach is more appropriate for this application. Considering only the peak wavelengths of illumination spectral bands leads to essentially different results if compared to those obtained by spectral line illumination and may cause misinterpretations in the clinical assessment of skin neoplasms.


Subject(s)
Lighting , Skin , Smartphone , Humans , Melanins , Oxyhemoglobins , Skin/diagnostic imaging , Skin Neoplasms/diagnostic imaging
3.
J Biomed Opt ; 26(10)2021 10.
Article in English | MEDLINE | ID: mdl-34713647

ABSTRACT

SIGNIFICANCE: Beer-Lambert law (BLL) is a widely used tool for contact and remote determination of absorber concentration in various media, including living tissues. Originally proposed in the 18th century as a simple exponential expression, it has survived numerous modifications and updates. The basic assumptions of this law may not be fulfilled in real measurement conditions. This can lead to mistaken or misinterpreted results. In particular, the effects to be additionally taken into account in the tissue measurements include anisotropy, scattering, fluorescence, chemical equilibria, interference, dichroism, spectral bandwidth disagreements, stray radiation, and instrumental effects. AIM: We review the current state of the art and the main limitations of remote tissue diagnostics using the BLL. Historical development of updating this law by taking into account specific additional factors such as light scattering and photon pathlengths in diffuse reflectance is described, along with highlighting the main risks to be considered by interpreting the measured data. APPROACH: Literature data related to extension and modification of the BLL related to tissue assessment and concentration estimation of specific tissue molecules are collected and analyzed. The main emphasis here is put on the optical measurements of living tissue chromophore concentrations and estimation of physiological parameters, e.g., blood oxygen saturation. RESULTS: Modified expressions of the BLL suitable for several specific cases of living tissue characterization are presented and discussed. CONCLUSIONS: Applications of updated/modified Beer-Lambert law (MBLL) with respect to particular measurement conditions are helpful for obtaining more reliable data on the target tissue physiological state and biochemical content. MBLL accounting for the role of scattering in several ways appears to be a successful approach. Extended MBLL and BLL in the time domain form could provide more accurate results, but this requires more time resources to be spent.


Subject(s)
Oximetry , Photons , Optical Phenomena
4.
J Biomed Opt ; 22(9): 91508, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28253387

ABSTRACT

Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448­532­659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer's law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.


Subject(s)
Dermatology/instrumentation , Lighting , Skin/diagnostic imaging , Smartphone , Humans , Lasers , Light , Skin Diseases/diagnostic imaging
5.
J Biomed Opt ; 20(5): 50503, 2015 May.
Article in English | MEDLINE | ID: mdl-25992844

ABSTRACT

The concept of snapshot red-green-blue (RGB) multispectral imaging was applied for skin chromophore mapping. Three monochromatic spectral images have been extracted from a single RGB image dataset at simultaneous illumination of skin by 473-, 532-, and 659-nm laser lines. The spectral images were further transformed into distribution maps of skin melanin, oxyhemoglobin, and deoxyhemoglobin, related to pigmented and vascular skin malformations. The performance and clinical potential of the proposed technique are discussed


Subject(s)
Colorimetry/methods , Hemoglobins/metabolism , Melanins/metabolism , Molecular Imaging/methods , Skin Diseases/metabolism , Skin/metabolism , Biomarkers/metabolism , Dermoscopy/methods , Humans , Reproducibility of Results , Sensitivity and Specificity , Skin Diseases/diagnosis , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...