Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38136826

ABSTRACT

In the expansive domain of neuropeptide investigation, spexin (SPX) has emerged as a captivating subject, exerting a significant impact on diverse physiological processes. Initially identified in mice, SPX's distribution transcends various organs, suggesting its potential regulatory roles. Despite extensive research in smaller species, a notable gap exists in our comprehension of SPX in larger mammals, particularly ruminants. Our study meticulously explores the immunolocalization of SPX within the gastrointestinal organs of bovines, with a specific focus on the abomasum, jejunum, and colon. Tissue samples from Holstein-Friesian cattle underwent careful processing, and gene mRNA expression levels, particularly GALR2 and SPX, were assessed. Intriguingly, our findings revealed that GALR2 expression was highest in the jejunum, signifying a potentially critical role in this digestive segment. Immunohistochemistry further unveiled distinct patterns of SPX immunoreactivity in each examined region-abomasum, jejunum, and colon-highlighting nuanced, region-specific responses. Notably, the abomasum and jejunum predominantly exhibited positive immunoreactivity in the submucosal plexus, while the colon, in contrast, demonstrated a higher degree of immunoreactivity in myenteric plexus neurons. Our investigation, grounded in the hypothesis of ubiquitous SPX distribution in ruminants, delves deeper into the intricate role of SPX within the enteric nervous system. This study meticulously explores the spatial distribution of SPX within the myenteric and submucosal plexuses, integral components of the enteric nervous system. These findings significantly enhance our understanding of SPX's potential roles in gastrointestinal regulation in bovines, providing a unique perspective on larger mammals and enriching our comprehension of this intriguing neuropeptide's significance in various physiological processes.

2.
Animals (Basel) ; 13(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37894016

ABSTRACT

In this study, a morphometric analysis of morphological changes in the layers of the small intestine (duodenum and jejunum) and liver occurring during the hatching period (week 0) and postnatal development (weeks 1, 3, 6, and 8) was performed in geese. For this purpose, the staining of samples obtained from tissues collected from geese after culling was carried out. Staining was performed using the Goldner method to visualize all layers of the intestine for morphometric measurements. Our analysis focused mainly on traits such as the thickness of the mucosal, submucosal, and muscular layers, as well as traits related to intestinal absorption, such as the height and width of intestinal villi and crypts. Additionally, we also took into account the number of mononuclear and binucleate hepatocytes and other cells present in the liver. After analyzing the results, an increase in most traits was found during the development of the animals, with slight differences between the sections of the duodenum and jejunum. An interesting phenomenon was also noticed-the greatest increase in most traits was observed between the 3rd and 6th week of life, which coincides with the time of feed change. We hope that our work will highlight how important the digestive system is for birds because research on this topic is limited.

3.
Animals (Basel) ; 13(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37443875

ABSTRACT

Lagomorphs, which include hares, rabbits, and pikas, are herbivorous animals renowned for their exceptional running abilities. The femur, the largest and strongest bone in their bodies, plays a crucial role in supporting their weight and facilitating movement. This study aimed to investigate the structural and functional changes in the femora of hares during their development in a sex-dependent manner, and the influence of aging on femur structure and function. Various mechanical properties, including stiffness and strength, as well as densitometry and morphology, were evaluated. The study was conducted on n = 24 hares collected from a hunting district in the Lublin region of Poland and divided into four groups: young females, adult females, young males and adult males (n = 6 animals each). Dual-energy X-ray absorptiometry (DXA) was used to measure bone mineral content (BMC) and bone mineral density (BMD), and a three-point bending test was performed to assess mechanical properties. The findings revealed age-related differences in bone properties, with adult males exhibiting increased BMC, and BMD compared to young males. Geometrical properties of the femora mid-diaphysis, such as cortical index and cross-sectional area, remained relatively unchanged during maturation. Regarding mechanical properties, the femora of young males exhibited higher elastic work compared to those of young females, while the femora of adult males exhibited higher elastic and breaking work than those of adult females. The stiffness of femora was higher in adult females compared to young females. The results provide insights into the development and aging of hare femora and contribute to our understanding of the relationship between bone mechanical properties, musculoskeletal system, and aging in the wild. This knowledge can inform animal husbandry practices in captivity and enhance our broader understanding of the ecological functions of lagomorphs.

SELECTION OF CITATIONS
SEARCH DETAIL
...