Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(20): 18053-18061, 2019 May 22.
Article in English | MEDLINE | ID: mdl-30964981

ABSTRACT

The controlled assembly of metal nanoparticles into ordered structures interacting with biological molecules is an emerging concept in surface science. Here, bare magnetite nanoparticles (Fe3O4-NPs) were employed as nanoadhesives to capture hollow metallic nanostructures (Au-Ag nanocages) from aqueous suspensions, and these coupled nanostructures were patterned onto various types of substrate via magnetolithography. Microwires of Au-Ag nanocages patterned onto an Au substrate behaved as optical antennas, providing a plasmonic enhancement exploited in surface-enhanced infrared absorption spectroscopy (SEIRAS) to investigate the proteins cytochrome c, bilirubin oxidase, alcohol dehydrogenase, bovine serum albumin, and glucose oxidase. Chemical maps containing more than 4000 spectra, acquired within only 2 min with a focal plane array detector, indicate that proteins were adsorbed along the microwires with their secondary structure preserved according to the spatial distribution of their amide groups. We believe there are significant practical aspects of the methodology proposed here to develop an alternative label-free assay for investigating biological molecules.


Subject(s)
Gold/chemistry , Magnetite Nanoparticles/chemistry , Oxidoreductases/chemistry , Serum Albumin, Bovine/chemistry , Silver/chemistry , Animals , Cattle , Nanoparticles , Spectrophotometry, Infrared
2.
Chem Sci ; 9(33): 6774-6778, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30294417

ABSTRACT

Metastable states of soft matters are extensively used in designing stimuli-responsive materials. However, the non-steady properties may obstruct consistent performance. Here we report an approach to eradicate the indistinguishable metastable supercooled state of functional molecular liquids (FMLs), which remains as a liquid for weeks or months before crystallizing, via rational molecular design. The phases (solid, kinetically stable liquid, and supercooled liquid) of a model FML, branched alkyl chain-substituted 9,10-diphenylanthracene (DPA), are found to be governed by subtle alterations of the molecular structure (alkyl-DPA ratio and bulkiness of the DPA unit). We thus outline molecular design principles to avoid supercooled FML formation. Moreover, we demonstrate a practical technique to rapidly discriminate supercooled FMLs (within 5 h) by accelerating their crystallization in differential scanning calorimetry heating via pre-annealing or relatively slow scanning.

3.
Nanomaterials (Basel) ; 8(5)2018 May 06.
Article in English | MEDLINE | ID: mdl-29734781

ABSTRACT

AIM: The aim of this study was to investigate the selected properties of zinc oxide- polymethyl methacrylate (ZnO-PMMA) nanocomposites that can influence the microorganism deposition on their surface. MATERIALS AND METHODS: Non-commercial ZnO-NPs were prepared, characterized and used for the preparation of PMMA nanocomposite. Roughness, absorbability, contact angle and hardness of this new nanomaterial were evaluated. PMMA without ZnO-NPs served as control. OUTCOMES: Compared to unenriched PMMA, incorporation of ZnO-NPs to 7.5% for PMMA nanocomposite increases the hardness (by 5.92%) and the hydrophilicity. After modification of the material with zinc oxide nanoparticles the roughness parameter did not change. All tested materials showed absorption within the range of 1.82 to 2.03%, which meets the requirements of International Organization for Standardization (ISO) standards for denture base polymers. CONCLUSIONS: The results showed no significant deterioration in the properties of acrylic resin that could disqualify the nanocomposite for clinical use. Increased hydrophilicity and hardness with absorbability within the normal range can explain the reduced microorganism growth on the denture base, as has been proven in a previous study.

4.
ACS Appl Mater Interfaces ; 9(11): 9945-9954, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28234457

ABSTRACT

The development of novel functional nanomaterials is critically important for the further evolution of advanced chemical sensor technology. For this purpose, metalloporphyrins offer unique binding properties as host molecules that can be tailored at the synthetic level and potentially improved by incorporation into inorganic materials. In this work, we present a novel hybrid nanosystem based on a highly networked silica nanoarchitecture conjugated through covalent bonding to an organic functional molecule, a tetraphenylporphyrin derivative, and its metal complexes. The sensing properties of the new hybrid materials were studied using a nanomechanical membrane-type surface stress sensor (MSS) with acetone and nitric oxide as model analytes. This hybrid inorganic-organic MSS-based system exhibited excellent performance for acetone sensing at low operating temperatures (37 °C), making it available for diagnostic monitoring. The hybridization of an inorganic substrate of large surface area with organic molecules of various functionalities results in sub-ppm detection of acetone vapors. Acetone is an important metabolite in lipid metabolism and can also be present in industrial environments at deleterious levels. Therefore, we believe that the analysis system presented by our work represents an excellent opportunity for the development of a portable, easy-to-use device for monitoring local acetone levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...