Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(8): e0202079, 2018.
Article in English | MEDLINE | ID: mdl-30148832

ABSTRACT

A mathematical model was developed for mesenchymal stromal cell (MSC) growth in a packed bed bioreactor that improves oxygen availability by allowing oxygen diffusion through a gas-permeable wall. The governing equations for oxygen, glucose and lactate, the inhibitory waste product, were developed assuming Michaelis-Menten kinetics, together with an equation for the medium flow based on Darcy's Law. The conservation law for the cells includes the effects of inhibition as the cells reach confluence, nutrient and waste product concentrations, and the assumption that the cells can migrate on the scaffold. The equations were solved using the finite element package, COMSOL. Previous experimental results collected using a packed bed bioreactor with gas permeable walls to expand MSCs produced a lower cell yield than was obtained using a traditional cell culture flask. This mathematical model suggests that the main contributors to the observed low cell yield were a non-uniform initial cell seeding profile and a potential lag phase as cells recovered from the initial seeding procedure. Lactate build-up was predicted to have only a small effect at lower flow rates. Thus, the most important parameters to optimise cell expansion in the proliferation of MSCs in a bioreactor with gas permeable wall are the initial cell seeding protocol and the handling of the cells during the seeding process. The mathematical model was then used to identify and characterise potential enhancements to the bioreactor design, including incorporating a central gas permeable capillary to further enhance oxygen availability to the cells. Finally, to evaluate the issues and limitations that might be encountered scale-up of the bioreactor, the mathematical model was used to investigate modifications to the bioreactor design geometry and packing density.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Models, Biological , Algorithms , Cell Proliferation , Oxygen Consumption , Stress, Physiological
2.
PLoS One ; 10(12): e0144941, 2015.
Article in English | MEDLINE | ID: mdl-26660475

ABSTRACT

Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.


Subject(s)
Bioreactors , Cell Culture Techniques/instrumentation , Mesenchymal Stem Cells/cytology , Placenta/cytology , Adipogenesis , Animals , Bone Marrow Cells/cytology , Cell Differentiation , Chondrogenesis , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis , Oxygen/chemistry , Oxygen/metabolism , Polystyrenes/chemistry , Pregnancy
3.
Chem Commun (Camb) ; 51(32): 7058-60, 2015 Apr 25.
Article in English | MEDLINE | ID: mdl-25807345

ABSTRACT

We report a stable plasma polymer coating, using isopentyl nitrite as a volatile precursor, which releases nitric oxide at bacteriostatic concentrations when contacted with water, inhibiting bacterial growth without cytotoxic side effects to human mesenchymal stem/stromal cells.


Subject(s)
Drug Carriers/chemistry , Drug Liberation , Nitric Oxide/chemistry , Plasma Gases/chemistry , Polymers/chemistry , Polymers/pharmacology , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Polymers/adverse effects
4.
Tissue Eng Part C Methods ; 18(5): 319-28, 2012 May.
Article in English | MEDLINE | ID: mdl-22082070

ABSTRACT

Hematopoietic stem cell (HSC) transplant is a well established curative therapy for some hematological malignancies. However, achieving adequate supply of HSC from some donor tissues can limit both its application and ultimate efficacy. The theory that this limitation could be overcome by expanding the HSC population before transplantation has motivated numerous laboratories to develop ex vivo expansion processes. Pioneering work in this field utilized stromal cells as support cells in cocultures with HSC to mimic the HSC niche. We hypothesized that through translation of this classic coculture system to a three-dimensional (3D) structure we could better replicate the niche environment and in turn enhance HSC expansion. Herein we describe a novel high-throughput 3D coculture system where murine-derived HSC can be cocultured with mesenchymal stem/stromal cells (MSC) in 3D microaggregates--which we term "micromarrows." Micromarrows were formed using surface modified microwells and their ability to support HSC expansion was compared to classic two-dimensional (2D) cocultures. While both 2D and 3D systems provide only a modest total cell expansion in the minimally supplemented medium, the micromarrow system supported the expansion of approximately twice as many HSC candidates as the 2D controls. Histology revealed that at day 7, the majority of bound hematopoietic cells reside in the outer layers of the aggregate. Quantitative polymerase chain reaction demonstrates that MSC maintained in 3D aggregates express significantly higher levels of key hematopoietic niche factors relative to their 2D equivalents. Thus, we propose that the micromarrow platform represents a promising first step toward a high-throughput HSC 3D coculture system that may enable in vitro HSC niche recapitulation and subsequent extensive in vitro HSC self-renewal.


Subject(s)
Coculture Techniques/methods , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Tissue Engineering/methods , Animals , Cell Aggregation/physiology , Cell Proliferation , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic
5.
Biochem Biophys Res Commun ; 400(4): 466-70, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20732307

ABSTRACT

Ascorbic acid (AA) is a common culture medium and dietary supplement. While AA is most commonly known for its antioxidant properties, it is also known to function as a pro-oxidant under select conditions. However, the complexity and often unknown composition of biological culture systems makes prediction of AA behaviour in supplemented cultures challenging. The frequent observation of outcomes inconsistent with antioxidant behaviour suggests that AA may be playing a pro-oxidant role more often than appreciated. In this work we explored the intracellular and extracellular impact of AA supplementation on KG1a myeloid leukaemia cells over a 24-h culture period following the addition of the AA supplement. At 24h we found that supplementation of AA up to 250µM resulted in intracellular antioxidant behaviour. However, when these same cultures were evaluated at 2 or 4h we observed pro-oxidant activity at the higher AA concentrations indicating that the outcome was very much time and dose dependent. In contrast, pro-oxidant activity was never observed in the extracellular medium. Paradoxically, and to our knowledge not previously reported, we observed that intracellular pro-oxidant activity and extracellular antioxidant activity could occur simultaneously. These results indicate that the precise activity of AA supplementation varies as a function of dose, time and cellular location. Further, these results demonstrate how in the absence of careful culture characterization the true impact of AA on cultures could be underappreciated.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Cell Culture Techniques , Cell Line, Tumor , Culture Media/pharmacology , Humans , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...