Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 11(3)2021 02 25.
Article in English | MEDLINE | ID: mdl-33668728

ABSTRACT

The phytohormone abscisic acid (ABA) plays an important role in plant growth and in response to abiotic stress factors. At the same time, its accumulation in soil can negatively affect seed germination, inhibit root growth and increase plant sensitivity to pathogens. ABA is an inert compound resistant to spontaneous hydrolysis and its biological transformation is scarcely understood. Recently, the strain Rhodococcus sp. P1Y was described as a rhizosphere bacterium assimilating ABA as a sole carbon source in batch culture and affecting ABA concentrations in plant roots. In this work, the intermediate product of ABA decomposition by this bacterium was isolated and purified by preparative HPLC techniques. Proof that this compound belongs to ABA derivatives was carried out by measuring the molar radioactivity of the conversion products of this phytohormone labeled with tritium. The chemical structure of this compound was determined by instrumental techniques including high-resolution mass spectrometry, NMR spectrometry, FTIR and UV spectroscopies. As a result, the metabolite was identified as (4RS)-4-hydroxy-3,5,5-trimethyl-4-[(E)-3-oxobut-1-enyl]cyclohex-2-en-1-one (dehydrovomifoliol). Based on the data obtained, it was concluded that the pathway of bacterial degradation and assimilation of ABA begins with a gradual shortening of the acyl part of the molecule.


Subject(s)
Abscisic Acid/metabolism , Cyclohexanones/metabolism , Rhizosphere , Rhodococcus/metabolism , Gene Expression Regulation, Plant , Magnetic Resonance Spectroscopy , Plant Growth Regulators/metabolism
2.
Int J Biol Macromol ; 84: 142-52, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26687241

ABSTRACT

Defensins are part of the innate immune system in plants with activity against a broad range of pathogens, including bacteria, fungi and viruses. Several defensins from conifers, including Scots pine defensin 1 (Pinus sylvestris defensin 1, (PsDef1)) have shown a strong antifungal activity, however structural and physico-chemical properties of the family, needed for establishing the structure-dynamics-function relationships, remain poorly characterized. We use several spectroscopic and computational methods to characterize the structure, dynamics, and oligomeric state of PsDef1. The three-dimensional structure was modeled by comparative modeling using several programs (Geno3D, SWISS-MODEL, I-TASSER, Phyre(2), and FUGUE) and verified by circular dichroism (CD) and infrared (FTIR) spectroscopy. Furthermore, FTIR data indicates that the structure of PsDef1 is highly resistant to high temperatures. NMR diffusion experiments show that defensin exists in solution in the equilibrium between monomers and dimers. Four types of dimers were constructed using the HADDOCK program and compared to the known dimer structures of other plant defensins. Gaussian network model was used to characterize the internal dynamics of PsDef1 in monomer and dimer states. PsDef1 is a typical representative of P. sylvestris defensins and hence the results of this study are applicable to other members of the family.


Subject(s)
Defensins/chemistry , Models, Molecular , Pinus sylvestris/chemistry , Plant Proteins/chemistry , Protein Conformation , Amino Acid Sequence , Circular Dichroism , Molecular Sequence Data , Position-Specific Scoring Matrices , Protein Multimerization , Protein Stability , Protein Structure, Secondary , Proton Magnetic Resonance Spectroscopy , Recombinant Proteins , Sequence Alignment , Spectroscopy, Fourier Transform Infrared
3.
FEBS Lett ; 587(16): 2552-8, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23827817

ABSTRACT

Non-classical P450s of CYP74 family control several enzymatic conversions of fatty acid hydroperoxides to bioactive oxylipins in plants, some invertebrates and bacteria. The family includes two dehydrases, namely allene oxide synthase (AOS) and divinyl ether synthase (DES), and two isomerases, hydroperoxide lyase (HPL) and epoxyalcohol synthase. To study the interconversion of different CYP74 enzymes, we prepared the mutant forms V379F and E292G of tobacco (CYP74D3) and flax (CYP74B16) divinyl ether synthases (DESs), respectively. In contrast to the wild type (WT) enzymes, both mutant forms lacked DES activity. Instead, they produced the typical AOS products, α-ketols and (in the case of the flax DES mutant) 12-oxo-10,15-phytodienoic acid. This is the first demonstration of DES into AOS conversions caused by single point mutations.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Intramolecular Oxidoreductases/chemistry , Plant Proteins/chemistry , Amino Acid Sequence , Computational Biology , Flax/enzymology , Gas Chromatography-Mass Spectrometry , Molecular Sequence Data , Mutagenesis, Site-Directed , Point Mutation , Protein Conformation , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid , Structure-Activity Relationship , Nicotiana/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...