Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(15)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38624112

ABSTRACT

Metal halide perovskites have brought about a disruptive shift in the field of third-generation photovoltaics. Their potential as remarkably efficient solar cell absorbers was first demonstrated in the beginning of the 2010s. However, right from their inception, persistent challenges have impeded the smooth adoption of this technology in the industry. These challenges encompass issues such as the lack of reproducibility in fabrication, limited mid- and long-term stability, and concerns over toxicity. Despite achieving record efficiencies that have outperformed even well-established technologies, such as polycrystalline silicon, these hurdles have hindered the seamless transition of this technology into industrial applications. In this Perspective, we discuss which of these challenges are rooted in the unique dual nature of metal halide perovskites, which simultaneously function as electronic and ionic semiconductors. This duality results in the intermingling of processes occurring at vastly different timescales, still complicating both their comprehensive investigation and the development of robust and dependable devices. Our discussion here undertakes a critical analysis of the field, addressing the current status of knowledge for devices based on halide perovskites in view of electronic and ionic conduction, the underlying models, and the challenges encountered when these devices are optoelectronically characterized. We place a distinct emphasis on the positive contributions that this area of research has not only made to the advancement of photovoltaics but also to the broader progress of solid-state physics and photoelectrochemistry.

2.
Materials (Basel) ; 16(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37297051

ABSTRACT

Perovskite solar cells (PSCs) have rapidly developed into one of the most attractive photovoltaic technologies, exceeding power conversion efficiencies of 25% and as the most promising technology to complement silicon-based solar cells. Among different types of PSCs, carbon-based, hole-conductor-free PSCs (C-PSCs), in particular, are seen as a viable candidate for commercialization due to the high stability, ease of fabrication, and low cost. This review examines strategies to increase charge separation, extraction, and transport properties in C-PSCs to improve the power conversion efficiency. These strategies include the use of new or modified electron transport materials, hole transport layers, and carbon electrodes. Additionally, the working principles of various printing techniques for the fabrication of C-PSCs are presented, as well as the most remarkable results obtained from each technique for small-scale devices. Finally, the manufacture of perovskite solar modules using scalable deposition techniques is discussed.

3.
ACS Appl Energy Mater ; 5(11): 14092-14106, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36465262

ABSTRACT

ZnO-based dye-sensitized solar cells exhibit lower efficiencies than TiO2-based systems despite advantageous charge transport dynamics and versatility in terms of synthesis methods, which can be primarily ascribed to compatibility issues of ZnO with the dyes and the redox couples originally optimized for TiO2. We evaluate the performance of solar cells based on ZnO nanomaterial prepared by microwave-assisted solvothermal synthesis, using three fully organic benzothiadiazole-based dyes YKP-88, YKP-137, and MG-207, and alternative electrolyte solutions with the I-/I3 -, Co(bpy)3 2+/3+, and Cu(dmp)2 1+/2+ redox couples. The best cell performance is achieved for the dye-redox couple combination YKP-88 and Co(bpy)3 2+/3+, reaching an average efficiency of 4.7% and 5.0% for the best cell, compared to 3.7% and 3.9% for the I-/I3 - couple with the same dye. Electrical impedance spectroscopy highlights the influence of dye and redox couple chemistry on the balance of recombination and regeneration kinetics. Combined with the effects of the interaction of the redox couple with the ZnO surface, these aspects are shown to determine the solar cell performance. Minimodules based on the best systems in both parallel and series configurations reach 1.5% efficiency for an area of 23.8 cm2.

4.
Phys Chem Chem Phys ; 24(26): 15657-15671, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35730867

ABSTRACT

Perovskite solar cells (PSCs) have reached impressively high efficiencies in a short period of time; however, the optoelectronic properties of halide perovskites are surprisingly complex owing to the coupled ionic-electronic charge carrier dynamics. Electrical impedance spectroscopy (EIS) is a widely used characterization tool to elucidate the mechanisms and kinetics governing the performance of PSCs, as well as of many other semiconductor devices. In general, equivalent circuits are used to evaluate EIS results. Oftentimes these are justified via empirical constructions and the real physical meaning of the elements remains disputed. In this perspective, we use drift-diffusion numerical simulations of typical thin-film, planar PSCs to generate impedance spectra avoiding intrinsic experimental difficulties such as instability and low reproducibility. The ionic and electronic properties of the device, such as ion vacancy density, diffusion coefficients, recombination mechanism, etc., can be changed individually in the simulations, so their effects can be directly observed. We evaluate the resulting EIS spectra by comparing two commonly used equivalent circuits with series and parallel connections respectively, which result in two signals with significantly different time constants. Both circuits can fit the EIS spectra and by extracting the values of the elements of one of the circuits, the values of the elements of the other circuit can be unequivocally obtained. Consequently, both can be used to analyse the EIS of a PSC. However, the physical meaning of each element in each circuit could differ. EIS can produce a broad range of physical information. We analyse the physical interpretation of the elements of each circuit and how to correlate the elements of one circuit with the elements of the other in order to have a direct picture of the physical processes occurring in the device.

5.
ACS Appl Energy Mater ; 4(9): 8941-8952, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34622143

ABSTRACT

Photochromic dye-sensitized solar cells (DSSCs) are novel semi-transparent photovoltaic devices that self-adjust their optical properties to the irradiation conditions, a feature that makes them especially suitable for building integrated photovoltaics. These novel solar cells have already achieved efficiencies above 4%, and there are multiple pathways to improve the performance. In this work, we conduct a full characterization of DSSCs with the photochromic dye NPI, combining electrical impedance spectroscopy (EIS) and intensity-modulated photocurrent spectroscopy (IMPS). We argue that the inherent properties of the photochromic dye, which result in a modification of the functioning of the solar cell by the optical excitation that also acts as a probe, pose unique challenges to the interpretation of the results using conventional models. Absorption of light in the visible range significantly increases when the NPI dye is in the activated state; however, the recombination rate also increases, thus limiting the efficiency. We identify and quantify the mechanism of enhanced recombination when the photochromic dye is activated using a combination of EIS and IMPS. From the comparison to a state-of-the-art reference dye (RK1), we were able to detect a new feature in the IMPS spectrum that is associated with the optical activation of the photochromic dye, providing a useful tool for assessing the electronic behavior of the device under different conditions of light excitation. This study provides guidelines to adequate characterization protocols of photochromic solar cells and essential insights on the interfacial electronic processes.

6.
Chempluschem ; 86(9): 1347-1356, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34553834

ABSTRACT

Recombination mechanisms in solar cells are frequently assessed through the determination of ideality factors. In this work we report an abrupt change of the value of the "apparent" ideality factor (nAP ) in high-efficiency FA0.71 MA0.29 PbI2.9 Br0.1 based mesoscopic perovskite solar cells as a function of light intensity. This change is manifested as a transition from a regime characterized by nAP ∼1.8-2.5 at low light intensities (<10 mWcm-2 ) to one characterized by nAP ∼1. This transition is equally observed in the recombination resistance extracted from open-circuit impedance measurements. We use drift-diffusion simulations with explicit consideration of ion migration to determine the origin of this transition. We find that a change ofrecombination mechanism concurrent with a modification of the concentration of ionic vacancies is the most likely explanation of the observed behaviour. In the drift-diffusion simulations we show that the apparent ideality factor is in fact affected by the ion vacancy concentration so it is not the optimal parameter to assess the dominant recombination mechanism. We argue that a procedure based on a recently derived "electronic" ideality factor obtained from the high frequency feature of the impedance spectrum is better suited to determine the recombination route that dictates the photovoltage.

7.
ACS Omega ; 5(19): 10977-10986, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32455218

ABSTRACT

An important reason for the relatively low efficiency of dye-sensitized solar cells (DSSCs) is the low open-circuit voltage (V OC) of about 0.7 V for a standard solar cell with a dye that has an absorption onset at 1.6 eV. We report an enhancement of the V OC of about 0.10 V with respect to a TiO2-based DSSC modified with ZnO nanoflowers that we prepared by a new and facile method. An additional increase of the V OC of about 0.08 V was achieved by modifying the ZnO nanoflowers with Au nanoparticles, resulting in a DSSC with an efficiency of 2.79%, highlighted by a high V OC of 0.89 V. Detailed analysis with electrochemical impedance spectroscopy and intensity-modulated photovoltage and photocurrent spectroscopies (IMVS and IMPS) reveal that the main reason for the increase of V OC is related to the shift of the band edges upon coupling TiO2 with ZnO nanoflowers, even though the electron lifetime at the same charge density actually decreases. These results show the intricate interplay between band edge shift, recombination kinetics, and DSSC performance and illustrate that a higher voltage DSSC can be fabricated by modification of the photoanode materials.

8.
J Phys Chem Lett ; 10(4): 877-882, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30732450

ABSTRACT

Metal halide perovskites (MHPs) are mixed electronic-ionic semiconductors with a remarkable photovoltaic potential that has led to a current world record efficiency surpassing 23%. This good performance stems from the combination of excellent light harvesting and relatively slow nonradiative recombination, which are characteristic of MHPs. However, taking advantage of these properties requires electron and hole transport materials that can efficiently extract charge with minimal photovoltage losses and recombination. It is well-known that n-type anatase TiO2 is a good electron-selective contact (ESC), although the fundamental reasons for its functioning are not completely clear to date. In this Letter, we investigate this issue by preparing perovskite-based solar cells with various n-type metal-oxide electron-selective contacts of different chemical nature and crystal structure. Our main finding is that the open-circuit photovoltage remains essentially independent of the nature of the contact for highly selective electron contacts, a fact that we attribute to a recombination rate that is mainly governed by the bulk of the MHPs. In contrast, replacement of the "standard" TiO2 contact by alternative contacts leads to lower short-circuit photocurrents and more pronounced hysteresis, related to enhanced surface recombination at less effective electron-selective contacts.

9.
Phys Chem Chem Phys ; 19(47): 32132-32142, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29182690

ABSTRACT

In this work, we study the influence of the distance between electrodes on the performance of dye-sensitized solar cells based on TiO2 using the organic dye LEG4 and a Cu(dmp)2 redox couple (dmp = dimethyl phenantroline). The solar cells are characterized by a large open circuit voltage of up to 1.03 V, and an efficiency of 8.2% has been achieved for a 5.3 µm thick TiO2 film using an epoxy resin-based sealed cell configuration with a minimal separation between electrodes. Transient short-circuit photocurrent measurements up to an intensity of 3 Suns show a significant decay in photocurrent after an initial peak current upon switching on the light for larger distance, resulting in a lower steady state photocurrent. For the smaller distance cells, the steady state photocurrent is linear with light intensity up to 2 Suns. Charge extraction measurements under short-circuit conditions show that reducing the distance between electrodes increases the electron collection efficiency and thus, the attainable photocurrent. Recombination losses increase with larger electrode separation distance and higher light intensity due to mass transport limitation of the redox mediator. Electrochemical impedance measurements confirm the effect of electrode distance on the redox couple transport, showing an additional loop with increasing distance. For the configuration where the TiO2 film is in very close proximity to the PEDOT-covered counter electrode, inductive behavior is observed at low frequencies. The inductive behavior disappears with the incorporation of an insulating porous ZrO2 layer. The equivalent circuit for the solar cell has been expanded to include this effect.

10.
Materials (Basel) ; 9(1)2016 Jan 08.
Article in English | MEDLINE | ID: mdl-28787833

ABSTRACT

The influence of the thickness of the nanostructured, mesoporous TiO2 film on several parameters determining the performance of a dye-sensitized solar cell is investigated both experimentally and theoretically. We pay special attention to the effect of the exchange current density in the dark, and we compare the values obtained by steady state measurements with values extracted from small perturbation techniques. We also evaluate the influence of exchange current density, the solar cell ideality factor, and the effective absorption coefficient of the cell on the optimal film thickness. The results show that the exchange current density in the dark is proportional to the TiO2 film thickness, however, the effective absorption coefficient is the parameter that ultimately defines the ideal thickness. We illustrate the importance of the exchange current density in the dark on the determination of the current-voltage characteristics and we show how an important improvement of the cell performance can be achieved by decreasing values of the total series resistance and the exchange current density in the dark.

11.
Chemphyschem ; 15(6): 1088-97, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24729526

ABSTRACT

ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes.

12.
Phys Chem Chem Phys ; 16(9): 4082-91, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24448680

ABSTRACT

Many recent advances in novel solar cell technologies are based on charge separation in disordered semiconductor heterojunctions. In this work we use the Random Walk Numerical Simulation (RWNS) method to model the dynamics of electrons and holes in two disordered semiconductors in contact. Miller-Abrahams hopping rates and a tunnelling distance-dependent electron-hole annihilation mechanism are used to model transport and recombination, respectively. To test the validity of the model, three numerical "experiments" have been devised: (1) in the absence of constant illumination, charge separation has been quantified by computing surface photovoltage (SPV) transients. (2) By applying a continuous generation of electron-hole pairs, the model can be used to simulate a solar cell under steady-state conditions. This has been exploited to calculate open-circuit voltages and recombination currents for an archetypical bulk heterojunction solar cell (BHJ). (3) The calculations have been extended to nanostructured solar cells with inorganic sensitizers to study, specifically, non-ideality in the recombination rate. The RWNS model in combination with exponential disorder and an activated tunnelling mechanism for transport and recombination is shown to reproduce correctly charge separation parameters in these three "experiments". This provides a theoretical basis to study relevant features of novel solar cell technologies.

13.
ACS Appl Mater Interfaces ; 5(5): 1556-65, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23347459

ABSTRACT

The presence and deteriorating action of microbial biofilms on historic stone buildings have received considerable attention in the past few years. Among microorganisms, fungi are one of the most damaging groups. In the present work, antimicrobial surfaces were prepared using suspensions of Ca(OH)2 particles, mixed with ZnO or TiO2 nanoparticles. The antimicrobial surfaces were evaluated for their antifungal activity both in the dark and under simulated natural photoperiod cycles, using Penicillium oxalicum and Aspergillus niger as model organisms, and two limestone lithotypes commonly used in construction and as materials for the restoration of historic buildings. Both Ca(OH)2-ZnO and Ca(OH)2-TiO2 materials displayed antifungal activity: ZnO-based systems had the best antifungal properties, being effective both in the dark and under illumination. In contrast, TiO2-based coatings showed antifungal activity only under photoperiod conditions. Controls with coatings consisting of only Ca(OH)2 were readily colonized by both fungi. The antifungal activity was monitored by direct observation with microscope, X-ray diffraction (XRD), and scanning electron microscopy (SEM), and was found to be different for the two lithotypes, suggesting that the mineral grain distribution and porosity played a role in the activity. XRD was used to investigate the formation of biominerals as indicator of the fungal attack of the limestone materials, while SEM illustrated the influence of porosity of both the limestone material and the coatings on the fungal penetration into the limestone. The coated nanosystems based on Ca(OH)2-50%ZnO and pure zincite nanoparticulate films have promising performance on low porosity limestone, showing good antifungal properties against P. oxalicum and A. niger under simulated photoperiod conditions.


Subject(s)
Antifungal Agents/pharmacology , Calcium Carbonate/chemistry , Calcium Hydroxide/chemistry , Construction Materials/microbiology , Nanostructures/chemistry , Titanium/chemistry , Zinc Oxide/chemistry , Antifungal Agents/chemistry , Aspergillus niger/drug effects , Aspergillus niger/growth & development , Aspergillus niger/radiation effects , Calcium Hydroxide/pharmacology , Construction Materials/analysis , Light , Penicillium/drug effects , Penicillium/growth & development , Penicillium/radiation effects , Titanium/pharmacology , X-Ray Diffraction
14.
Phys Chem Chem Phys ; 14(29): 10285-99, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22735099

ABSTRACT

A numerical model that simulates the steady-state current-voltage curve and the time-dependent response of a dye-sensitized solar cell with a single continuity equation is derived. It is shown that the inclusion of the multiple-trapping model, the quasi-static approximation and non-linear recombination kinetics leads to a continuity equation for the total electron density in the photoanode with an electron density-dependent diffusion coefficient and a density-dependent pseudo-first order recombination constant. All parameters in the model can be related to quantities accessible experimentally. The required power exponents are taken from impedance spectroscopy measurements at different voltages. The model provides new insights into the physical interpretation of the power exponents. Modeling examples involving a high-efficiency TiO(2)-based dye solar cell and a ZnO-based dye solar cell are presented. It is demonstrated that the model reproduces the transient behavior of the cell under small perturbations. The spatial dependence of the recombination rate and the influence of film thickness and of voltage dependent injection efficiency on cell performance are studied. The implications of the model are discussed in terms of efficiencies potentially attainable in dye-sensitized solar cells and other kinds of solar cells with a diffusional mechanism of charge transport.

15.
Int J Nanomedicine ; 6: 19-31, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21289978

ABSTRACT

INTRODUCTION: We have evaluated the use of silica-dopamine reservoirs synthesized by the sol-gel approach with the aim of using them in the treatment of Parkinson's disease, specifically as a device for the controlled release of dopamine in the striatum. Theoretical calculations illustrate that dopamine is expected to assume a planar structure and exhibit weak interactions with the silica surface. METHODS: Several samples were prepared by varying the wt% of dopamine added during the hydrolysis of tetraethyl orthosilicate. The silica-dopamine reservoirs were characterized by N(2) adsorption, scanning and transmission electron microscopy, and Fourier transform infrared spectroscopy. The in vitro release profiles were determined using ultraviolet visible absorbance spectroscopy. The textural analyses showed a maximum value for the surface area of 620 m(2)/g nanostructured silica materials. The stability of dopamine in the silica network was confirmed by infrared and (13)C-nuclear magnetic resonance spectroscopy. The reservoirs were evaluated by means of apomorphine-induced rotation behavior in hemiparkisonian rats. RESULTS: The in vitro dopamine delivery profiles indicate two regimes of release, a fast and sustained dopamine delivery was observed up to 24 hours, and after this time the rate of delivery became constant. Histologic analysis of formalin-fixed brains performed 24-32 weeks after reservoir implantation revealed that silica-dopamine implants had a reddish-brown color, suggesting the presence of oxidized dopamine, likely caused by the fixation procedure, while implants without dopamine were always translucent. CONCLUSION: The major finding of the study was that intrastriatal silica-dopamine implants reversed the rotational asymmetry induced by apomorphine, a dopamine agonist, in hemiparkinsonian rats. No dyskinesias or other motor abnormalities were observed in animals implanted with silica or silica-dopamine.


Subject(s)
Brain Chemistry , Dopamine/administration & dosage , Nanostructures/administration & dosage , Parkinson Disease/drug therapy , Animals , Delayed-Action Preparations , Disease Models, Animal , Dopamine/chemistry , Dopamine/pharmacokinetics , Drug Implants , Histocytochemistry , Kinetics , Male , Microscopy, Electron, Transmission , Nanostructures/chemistry , Nanostructures/ultrastructure , Nuclear Magnetic Resonance, Biomolecular , Parkinson Disease/metabolism , Parkinson Disease/pathology , Porosity , Rats , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , X-Ray Diffraction
16.
J Phys Chem B ; 110(11): 5372-8, 2006 Mar 23.
Article in English | MEDLINE | ID: mdl-16539471

ABSTRACT

We propose a numerical model aimed at obtaining the electrical output of dye-sensitized solar cells from microscopic parameters. The model is based on the solution of the continuity equation as a function of voltage for electron transport with both the diffusion coefficient and the recombination constant dependent on the electron density, i.e., the light intensity and/or voltage. The density dependence of the kinetic parameters can be implemented in analytical form (via a power-law expression) or extracted from experiments or electron transport simulations. We investigate the situation where the recombination rate is limited by the electron transport in the nanostructured film, as has recently been suggested by various authors. It is observed that for a power-law density dependence governed by a single alpha parameter, related to the depth and shape of a trap energy distribution, the solar cell behaves as an ideal diode, where the short-circuit current, open-circuit voltage, and current-voltage characteristics are independent of the alpha parameter. According to the formal description provided here, where recombination is limited by electron transport, lowering the trap density or changing alpha by changing the morphology or materials properties, thus improving the conductivity, would not lead to a better performance of the solar cell under steady-state conditions. The numerical results are compared to intensity-dependent current-voltage measurements on chlorophyll-sensitized TiO(2) solar cells.

17.
J Colloid Interface Sci ; 288(1): 313-6, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-15927594

ABSTRACT

We report on the synthesis of ZnO nanoparticles from Zn(CH3CO2)2 and NaOH in 2-propanol. Nucleation and growth are fast, and hence at longer times the particle size is controlled by coarsening. The coarsening kinetics are independent of the Zn(CH3CO2)2 concentration between 0.5 and 1.25 mM at a fixed [Zn(CH3CO2)2]:[NaOH] ratio of 0.625. The width of the size distribution was found to increase only slightly with aging time. In addition, at a fixed Zn(CH3CO2)2 concentration of 1 mM, the kinetics are independent of the [Zn(CH3CO2)2]:[NaOH] ratio between 0.476 and 0.625. The presence of water in the reaction mixture was found to only slightly affect the coarsening kinetics for water contents larger than about 20 mM. For lower water concentrations, the nucleation and growth of ZnO were very slow. It can be concluded that the synthesis method described provides a reliable source of ZnO nanoparticles due to its insensitivity to the reactant concentrations and the presence of water.

18.
J Phys Chem B ; 109(22): 11209-14, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-16852368

ABSTRACT

We report on the synthesis of ZnO particles from Zn(CH(3)CO(2))(2) in 2-propanol as a function of the concentration of water, in the absence of a base such as NaOH. Particles with diameters of 3-5 nm are formed depending on time, temperature, and water concentration. The nucleation and growth are slower than in the presence of NaOH, and at longer times the increase in particle size is dominated by diffusion-limited coarsening. The rate constant for coarsening increases with increasing water concentration up to 150 mM, above which the rate constant is 1.1 x 10(-4) cm(3) s(-1), independent of the water concentration. The width of the particle size distribution decreases with increasing water concentration, and at 250 mM water, the full width at half-maximum of the distribution function is essentially the same as for the synthesis of ZnO using NaOH as a reactant. The temperature dependence of coarsening is determined by the bulk solubility of the ZnO nanoparticles and yields an apparent activation energy of 1.12 eV. This is significantly larger than the activation energy of 0.35 eV for coarsening of ZnO from 1 mM Zn(CH(3)CO(2))(2) in 2-propanol with 1.6 mM NaOH.

19.
J Phys Chem B ; 109(2): 937-43, 2005 Jan 20.
Article in English | MEDLINE | ID: mdl-16866462

ABSTRACT

Dye-sensitized mesoporous nanocrystalline SnO2 electrodes and the pseudohalogen redox mediator (SeCN)2/SeCN- or (SCN)2/SCN- or the halogen redox mediator I3-/I- were implemented for regenerative solar cell studies. Adsorption isotherms of the sensitizers Ru(deeb)(bpy)2(PF6)2, Ru(deeb)2(dpp)(PF6)2, and Ru(deeb2(bpz)(PF6)2, where deeb is 4,4'-diethylester-2,2'-bipyridine, dpp is 2,3-dipyridyl pyrazine, and bpz is bipyrazine, binding to the SnO2 surface were well described by the Langmuir model from which the saturation coverage, Gamma0 = 1.7 x 10(-8) mol/cm2, and surface-adduct formation constant, Kad = 2 x 10(5) M(-1), were obtained. Following excited-state interfacial electron transfer, the oxidized sensitizers were reduced by donors present in the acetonitrile electrolyte as shown by transient absorption spectroscopy. With iodide as the donor, a rate constant k > 10(8) s(-1) was measured for sensitizer regeneration. In regenerative solar cells, it was found that the incident photon-to-current conversion efficiencies and open circuit voltages (Voc) were comparable for (SeCN)2/SeCN- and I3-/I- for all three sensitizers. The Voc varied linearly with the logarithm of the short circuit photocurrent densities (Jsc), with typical correlations of approximately 50-60 mV/decade. Capacitance measurements of the SnO2 electrode in the presence of I3-/I-, (SeCN)2/SeCN- or (SCN)2/SCN- are reported.


Subject(s)
Coloring Agents/chemistry , Iodides/chemistry , Selenium Compounds/chemistry , Thiocyanates/chemistry , Tin Compounds/chemistry , Adsorption , Electrodes , Organometallic Compounds/chemistry , Oxidation-Reduction , Porosity , Ruthenium/chemistry , Sensitivity and Specificity , Time Factors
20.
J Colloid Interface Sci ; 263(2): 454-60, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12909035

ABSTRACT

We have synthesized ZnO nanoparticles by precipitation from zinc acetate in a series of n-alkanols from ethanol to 1-hexanol as a function of temperature. In this system, nucleation and growth are relatively fast and, at longer times, the average particle size continues to increase due to diffusion-limited coarsening. During coarsening, the particle volume increases linearly with time, in agreement with the Lifshitz-Slyozov-Wagner (LSW) model. The coarsening rate increases with increasing temperature for all solvents and increases with alkanol chain length. We show that the rate constant for coarsening is determined by the solvent viscosity, surface energy, and the bulk solubility of ZnO in the solvent.

SELECTION OF CITATIONS
SEARCH DETAIL
...