Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Science ; 351(6273): 617-21, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26912705

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Benzylamines/administration & dosage , Cardiac Myosins/antagonists & inhibitors , Cardiomyopathy, Hypertrophic, Familial/drug therapy , Myocardial Contraction/drug effects , Myosin Heavy Chains/antagonists & inhibitors , Sarcomeres/drug effects , Uracil/analogs & derivatives , Animals , Benzylamines/chemistry , Cardiac Myosins/genetics , Cardiomyopathy, Hypertrophic, Familial/pathology , Cardiomyopathy, Hypertrophic, Familial/physiopathology , Cells, Cultured , Disease Models, Animal , Fibrosis , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heterozygote , Humans , Male , Mice , Mice, Inbred Strains , Mutation , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Rats , Uracil/administration & dosage , Uracil/chemistry
2.
ACS Med Chem Lett ; 4(1): 113-7, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-24900571

ABSTRACT

Potent imidazopyridine-based inhibitors of fatty acid synthase (FASN) are described. The compounds are shown to have antiviral (HCV replicon) activities that track with their biochemical activities. The most potent analogue (compound 19) also inhibits rat FASN and inhibits de novo palmitate synthesis in vitro (cell-based) as well as in vivo.

3.
ACS Med Chem Lett ; 3(3): 203-6, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-24900456

ABSTRACT

LFA-1/ICAM-1 interaction is essential in support of inflammatory and specific T-cell regulated immune responses by mediating cell adhesion, leukocyte extravasation, migration, antigen presentation, formation of immunological synapse, and augmentation of T-cell receptor signaling. The increase of ICAM-1 expression levels in conjunctival epithelial cells and acinar cells was observed in animal models and patients diagnosed with dry eye. Therefore, it has been hypothesized that small molecule LFA-1/ICAM-1 antagonists could be an effective topical treatment for dry eye. In this letter, we describe the discovery of a potent tetrahydroisoquinoline (THIQ)-derived LFA-1/ICAM-1 antagonist (SAR 1118) and its development as an ophthalmic solution for treating dry eye.

4.
Bioorg Med Chem Lett ; 21(1): 307-10, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21109434

ABSTRACT

This letter describes the structure-activity relationship (SAR) of the 'right-wing' α-amino acid residue of potent tetrahydroisoquinoline (THIQ)-derived LFA-1/ICAM-1 antagonists. Novel (S)-substituted heteroaryl-bearing α-amino acids have been identified as replacements of the 'right-wing' (S)-2,3-diaminopropanoic acid (DAP) moiety. Improvement of potency in the Hut-78 assay in the presence of 10% human serum has also been achieved.


Subject(s)
Amino Acids/chemistry , Intercellular Adhesion Molecule-1/chemistry , Lymphocyte Function-Associated Antigen-1/chemistry , Tetrahydroisoquinolines/chemistry , Animals , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Male , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/pharmacokinetics , beta-Alanine/analogs & derivatives , beta-Alanine/chemistry
5.
Bioorg Med Chem Lett ; 20(17): 5269-73, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20655213

ABSTRACT

This letter describes the discovery of a novel series of tetrahydroisoquinoline (THIQ)-derived small molecules that potently inhibit both human T-cell migration and super-antigen induced T-cell activation through disruption of the binding of integrin LFA-1 to its receptor, ICAM-1. In addition to excellent in vitro potency, 6q shows good pharmacokinetic properties and its ethyl ester (6t) demonstrates good oral bioavailability in both mouse and rat. Either intravenous administration of 6q or oral administration of its ethyl ester (6t) produced a significant reduction of neutrophil migration in a thioglycollate-induced murine peritonitis model.


Subject(s)
Intercellular Adhesion Molecule-1/drug effects , Lymphocyte Function-Associated Antigen-1/drug effects , Tetrahydroisoquinolines/pharmacology , Animals , Biological Availability , Drug Discovery , Humans , Tetrahydroisoquinolines/administration & dosage , Tetrahydroisoquinolines/pharmacokinetics
6.
Bioorg Med Chem Lett ; 19(17): 5158-61, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19646866

ABSTRACT

This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.


Subject(s)
Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Aurora Kinases , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Cell Line, Tumor , Humans , Mice , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 19(5): 1409-12, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19186057

ABSTRACT

Compound 1 (SNS-314) is a potent and selective Aurora kinase inhibitor that is currently in clinical trials in patients with advanced solid tumors. This communication describes the synthesis of prodrug derivatives of 1 with improved aqueous solubility profiles. In particular, phosphonooxymethyl-derived prodrug 2g has significantly enhanced solubility and is converted to the biologically active parent (1) following iv as well as po administration to rodents.


Subject(s)
Phenylurea Compounds/chemistry , Prodrugs/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/chemistry , Water/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Aurora Kinases , Male , Mice , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Solubility , Thiazoles/pharmacokinetics , Thiazoles/pharmacology
8.
Bioorg Med Chem Lett ; 18(17): 4880-4, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18678489

ABSTRACT

This communication describes the discovery of a novel series of Aurora kinase inhibitors. Key SAR and critical binding elements are discussed. Some of the more advanced analogues potently inhibit cellular proliferation and induce phenotypes consistent with Aurora kinase inhibition. In particular, compound 21 (SNS-314) is a potent and selective Aurora kinase inhibitor that exhibits significant activity in pre-clinical in vivo tumor models.


Subject(s)
Neoplasms, Experimental/drug therapy , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Quinazolines/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinases , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Mice , Neoplasm Transplantation , Neoplasms, Experimental/enzymology , Quinazolines/chemistry , Structure-Activity Relationship
9.
Science ; 310(5750): 1022-5, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16284179

ABSTRACT

We have identified a small-molecule inhibitor of tumor necrosis factor alpha (TNF-alpha) that promotes subunit disassembly of this trimeric cytokine family member. The compound inhibits TNF-alpha activity in biochemical and cell-based assays with median inhibitory concentrations of 22 and 4.6 micromolar, respectively. Formation of an intermediate complex between the compound and the intact trimer results in a 600-fold accelerated subunit dissociation rate that leads to trimer dissociation. A structure solved by x-ray crystallography reveals that a single compound molecule displaces a subunit of the trimer to form a complex with a dimer of TNF-alpha subunits.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/chemistry , Biotinylation , Chemical Phenomena , Chemistry, Physical , Crystallography, X-Ray , Dimerization , Fluorescence , Hydrogen/chemistry , Hydrophobic and Hydrophilic Interactions , Indoles/chemical synthesis , Kinetics , Mass Spectrometry , Models, Chemical , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Conformation , Protein Subunits/chemistry , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Bioorg Med Chem Lett ; 15(4): 983-7, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15686897

ABSTRACT

The identification, design, and synthesis of a series of novel sulfamide- and urea-based small-molecule antagonists of the protein-protein interaction IL-2/IL-2Ralpha are described. Installation of a furan carboxylic acid fragment onto a low-micromolar sulfamide resulted in a 23-fold improvement in activity, providing a sub-micromolar, nonpeptidic IL-2 inhibitor (IC(50)=0.60 microM).


Subject(s)
Interleukin-2/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Interleukin-2/metabolism , Models, Molecular , Protein Binding/drug effects , Receptors, Interleukin-2/metabolism , Structure-Activity Relationship , Sulfonic Acids/chemistry , Sulfonic Acids/pharmacology , Urea/chemistry , Urea/pharmacology
11.
J Med Chem ; 47(12): 3111-30, 2004 Jun 03.
Article in English | MEDLINE | ID: mdl-15163192

ABSTRACT

Fragment assembly has shown promise for discovering small-molecule antagonists for difficult targets, including protein-protein interactions. Here, we describe a process for identifying a 60 nM inhibitor of the interleukin-2 (IL-2)/IL-2 receptor (IL-2Ralpha) interaction. By use of fragment-based approaches, a compound with millimolar affinity was evolved to a hit series with low micromolar activity, and these compounds were optimized into a lead series with nanomolar affinity. Fragment assembly was useful not only for hit identification, but also for lead optimization. Throughout the discovery process, biophysical methods and structural biology demonstrated that compounds bound reversibly to IL-2 at the IL-2 receptor binding site.


Subject(s)
Acetylene/chemical synthesis , Dipeptides/chemical synthesis , Interleukin-2/antagonists & inhibitors , Receptors, Interleukin/antagonists & inhibitors , Acetylene/chemistry , Acetylene/pharmacology , Animals , Benzene Derivatives/chemistry , Binding Sites , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Dipeptides/chemistry , Dipeptides/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Interleukin-2/chemistry , Interleukin-2 Receptor alpha Subunit , Mice , Models, Molecular , Piperidines/chemistry , Pyrazoles/chemistry , Receptors, Interleukin/chemistry
12.
J Am Chem Soc ; 125(13): 3714-5, 2003 Apr 02.
Article in English | MEDLINE | ID: mdl-12656598

ABSTRACT

Using a site-directed fragment discovery method called tethering, we have identified a 60 nM small molecule antagonist of a cytokine/receptor interaction (IL-2/IL2Ralpha) with cell-based activity. Starting with a low micromolar hit, we employed a combination of tethering, structural biology, and computational analysis to design a focused set of 20 compounds. Eight of these compounds were at least 5-fold more active than the original hit. One of these compounds showed a 50-fold enhancement and represents the highest affinity inhibitor reported against this protein-protein target class. This method of coupling selected fragments with a low micromolar hit shows great potential for generating high-affinity lead compounds.


Subject(s)
Interleukin-2/antagonists & inhibitors , Interleukin-2/chemistry , Peptide Fragments/chemistry , Alkynes/chemistry , Alkynes/pharmacology , Drug Design , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit , Kinetics , Models, Molecular , Piperidines/chemistry , Piperidines/pharmacology , Protein Conformation , Receptors, Interleukin/agonists , Structure-Activity Relationship
13.
Proc Natl Acad Sci U S A ; 100(4): 1603-8, 2003 Feb 18.
Article in English | MEDLINE | ID: mdl-12582206

ABSTRACT

Understanding binding properties at protein-protein interfaces has been limited to structural and mutational analyses of natural binding partners or small peptides identified by phage display. Here, we present a high-resolution analysis of a nonpeptidyl small molecule, previously discovered by medicinal chemistry [Tilley, J. W., et al. (1997) J. Am. Chem. Soc. 119, 7589-7590], which binds to the cytokine IL-2. The small molecule binds to the same site that binds the IL-2 alpha receptor and buries into a groove not seen in the free structure of IL-2. Comparison of the bound and several free structures shows this site to be composed of two subsites: one is rigid, and the other is highly adaptive. Thermodynamic data suggest the energy barriers between these conformations are low. The subsites were dissected by using a site-directed screening method called tethering, in which small fragments were captured by disulfide interchange with cysteines introduced into IL-2 around these subsites. X-ray structures with the tethered fragments show that the subsite-binding interactions are similar to those observed with the original small molecule. Moreover, the adaptive subsite tethered many more compounds than did the rigid one. Thus, the adaptive nature of a protein-protein interface provides sites for small molecules to bind and underscores the challenge of applying structure-based design strategies that cannot accurately predict a dynamic protein surface.


Subject(s)
Interleukin-2/metabolism , Cloning, Molecular , Crystallography, X-Ray , Humans , Interleukin-2/genetics , Ligands , Models, Molecular , Protein Binding , Receptors, Interleukin-2/metabolism , Surface Plasmon Resonance , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...