Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 673: 647-656, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38901355

ABSTRACT

Monodisperse nanoparticles of biodegradable polyhydroxyalkanoates (PHAs) polymers, copolymers of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB), are synthesized using a membrane-assisted emulsion encapsulation and evaporation process for biomedical resorbable adhesives. The precise control over the diameter of these PHA particles, ranging from 100 nm to 8 µm, is achieved by adjusting the diameter of emulsion or the PHA concentration. Mechanical properties of the particles can be tailored based on the 3HB to 4HB ratio and molecular weight, primarily influenced by the level of crystallinity. These monodisperse PHA particles in solution serve as adhesives for hydrogel systems, specifically those based on poly(N, N-dimethylacrylamide) (PDMA). Semi-crystalline PHA nanoparticles exhibit stronger adhesion energy than their amorphous counterparts. Due to their self-adhesiveness, adhesion energy increases even when those PHA nanoparticles form multilayers between hydrogels. Furthermore, as they degrade and are resorbed into the body, the PHA nanoparticles demonstrate efficacy in in vivo wound closure, underscoring their considerable impact on biomedical applications.

2.
Carbohydr Polym ; 327: 121642, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171670

ABSTRACT

Chitosan has excellent antimicrobial, adsorption, heavy metal removal, and adhesion properties, making it a good substitute for microplastic-based cleaners. Here, chitosan microbeads (chito-beads) of various sizes ranging from 32 µm to 283 µm were prepared via emulsion using a liquid on oil method and the feasibility of using them as an essential constituent in a chemical cleaning solution for a reverse-osmosis (RO) membrane-fouling-control process was assessed. Prior to the assessment the cleaning efficiency of a solution containing chito-beads, the interaction energy between chitosan and a representative organic foulant (humic acid (HA)) in a RO membrane fouling was analyzed using colloidal atomic force microscopy, and the strongest attraction between chitosan and HA was observed in an aqueous solution. When comparing the membrane cleaning efficiency of cleaning solutions with and without chito-beads, smaller chito-beads (32 µm and 70 µm) were found to have higher cleaning efficiency. Applications of chito-beads to the membrane cleaning process can enhance the cleaning efficiency through the physicochemical interaction with organic foulants. This study can widen the use of chito-beads as an additive to membrane chemical cleaning solutions to control membrane fouling in other membrane processes as well.

3.
Carbohydr Polym ; 299: 120172, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36876787

ABSTRACT

The stickiest natural polysaccharide, levan, plays a role in metalloproteinase activation, which is an important step involved in the healing of injured tissue. However, levan is easily diluted, washed away, and loses adhesion in wet environments, which limits its biomedical applications. Herein, we demonstrate a strategy for fabricating a levan-based adhesive hydrogel for hemostatic and wound healing applications by conjugating catechol to levan. Prepared hydrogels exhibit significantly improved water solubilities, and adhesion strengths to hydrated porcine skin of up to 42.17 ± 0.24 kPa which is more than three-times that of fibrin glue adhesive. The hydrogels also promote rapid blood clotting and significantly faster healing of rat-skin incisions compared to nontreated samples. In addition, levan-catechol exhibited an immune response close to that of the negative control, which is ascribable to its significantly lower endotoxin level compared to native levan. Overall, levan-catechol hydrogels are promising materials for hemostatic and wound healing applications.


Subject(s)
Bivalvia , Hemostatics , Swine , Animals , Rats , Wound Healing , Fructans , Catechols , Hydrogels
4.
Carbohydr Polym ; 165: 61-70, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28363576

ABSTRACT

Levan based cross-linker was successfully synthesized and used to prepare a series of more biocompatible and temperature responsive levan/N-isopropyl acrylamide (levan/pNIPA) hydrogels by redox polymerization at room temperature. Volume phase transition temperature (VPTT) of the hydrogels were precisely determined by derivative differential scanning calorimetry (DDSC). Incorporation of levan into the pNIPA hydrogel increased the VPTT from 32.8°C to 35.09°C, approaching to body temperature. Swelling behavior and 5-aminosalicylic acid (5-ASA) release of the hydrogels were found to vary significantly with temperature and composition. Moreover, a remarkable increase in thermal stability of levan within hydrogel with increase of pNIPA content was recorded. The biocompatibility of the hydrogels were tested against mouse fibroblast L929 cell line in phosphate buffer saline (PBS, pH 7.4). The hydrogels showed increasing biocompatibility with increasing levan ratio, indicating levan enhanced the hydrogel surface during swelling.

SELECTION OF CITATIONS
SEARCH DETAIL
...