Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35625441

ABSTRACT

A hallmark of antiviral RNA interference (RNAi) is the production of viral small interfering RNA (vsiRNA). Profiling of vsiRNAs indicates that certain regions of viral RNA genome or transcribed viral RNA, dubbed vsiRNA hotspots, are more prone to RNAi-mediated cleavage for vsiRNA biogenesis. However, the biological relevance of hotspot vsiRNAs to the host innate defence against pathogens remains to be elucidated. Here, we show that direct targeting a hotspot by a synthetic vsiRNA confers host resistance to virus infection. Using Northern blotting and RNAseq, we obtained a profile of vsiRNAs of the African cassava mosaic virus (ACMV), a single-stranded DNA virus. Sense and anti-sense strands of small RNAs corresponding to a hotspot and a coldspot vsiRNA were synthesised. Co-inoculation of Nicotiana benthamiana with the double-stranded hotspot siRNA protected plants from ACMV infection, where viral DNA replication and accumulation of viral mRNA were undetectable. The sense or anti-sense strand of this hotspot vsiRNA, and the coldspot vsiRNA in both double-stranded and single-stranded formats possessed no activity in viral protection. We further demonstrated that the hotspot vsiRNA-mediated virus resistance had a threshold effect and required an active RDR6. These data show that hotspot vsiRNAs bear a functional significance on antiviral RNAi, suggesting that they may have the potential as an exogenous protection agent for controlling destructive viral diseases in plants.

2.
Sci Rep ; 5: 9192, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25778911

ABSTRACT

Naturally-occurring epimutants are rare and have mainly been described in plants. However how these mutants maintain their epigenetic marks and how they are inherited remain unknown. Here we report that CHROMOMETHYLASE3 (SlCMT3) and other methyltransferases are required for maintenance of a spontaneous epimutation and its cognate Colourless non-ripening (Cnr) phenotype in tomato. We screened a series of DNA methylation-related genes that could rescue the hypermethylated Cnr mutant. Silencing of the developmentally-regulated SlCMT3 gene results in increased expression of LeSPL-CNR, the gene encodes the SBP-box transcription factor residing at the Cnr locus and triggers Cnr fruits to ripen normally. Expression of other key ripening-genes was also up-regulated. Targeted and whole-genome bisulfite sequencing showed that the induced ripening of Cnr fruits is associated with reduction of methylation at CHG sites in a 286-bp region of the LeSPL-CNR promoter, and a decrease of DNA methylation in differentially-methylated regions associated with the LeMADS-RIN binding sites. Our results indicate that there is likely a concerted effect of different methyltransferases at the Cnr locus and the plant-specific SlCMT3 is essential for sustaining Cnr epi-allele. Maintenance of DNA methylation dynamics is critical for the somatic stability of Cnr epimutation and for the inheritance of tomato non-ripening phenotype.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic , Mutation , Phenotype , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Alleles , DNA Methylation , Ethylenes/biosynthesis , Fruit , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Silencing , Genome-Wide Association Study , Promoter Regions, Genetic , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Sci Rep ; 5: 7852, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25597857

ABSTRACT

In plants, microRNAs (miRNAs) play essential roles in growth, development, yield, stress response and interactions with pathogens. However no miRNA has been experimentally documented to be functionally involved in fruit ripening although many miRNAs have been profiled in fruits. Here we show that SlymiR157 and SlymiR156 differentially modulate ripening and softening in tomato (Solanum lycopersicum). SlymiR157 is expressed and developmentally regulated in normal tomato fruits and in those of the Colourless non-ripening (Cnr) epimutant. It regulates expression of the key ripening gene LeSPL-CNR in a likely dose-dependent manner through miRNA-induced mRNA degradation and translation repression. Viral delivery of either pre-SlymiR157 or mature SlymiR157 results in delayed ripening. Furthermore, qRT-PCR profiling of key ripening regulatory genes indicates that the SlymiR157-target LeSPL-CNR may affect expression of LeMADS-RIN, LeHB1, SlAP2a and SlTAGL1. However SlymiR156 does not affect the onset of ripening, but it impacts fruit softening after the red ripe stage. Our findings reveal that working together with a ripening network of transcription factors, SlymiR157 and SlymiR156 form a critical additional layer of regulatory control over the fruit ripening process in tomato.


Subject(s)
Fruit/genetics , MicroRNAs/biosynthesis , Plant Proteins/biosynthesis , RNA, Plant/genetics , Solanum lycopersicum/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Solanum lycopersicum/growth & development , MicroRNAs/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic
4.
Virus Res ; 190: 110-7, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25051146

ABSTRACT

Pepino mosaic virus (PepMV) is a mechanically-transmitted positive-strand RNA potexvirus, with a 6410 nt long single-stranded (ss) RNA genome flanked by a 5'-methylguanosine cap and a 3' poly-A tail. Computer-assisted folding of the 64 nt long PepMV 3'-untranslated region (UTR) resulted in the prediction of three stem-loop structures (hp1, hp2, and hp3 in the 3'-5' direction). The importance of these structures and/or sequences for promotion of negative-strand RNA synthesis and binding to the RNA dependent RNA polymerase (RdRp) was tested in vitro using a specific RdRp assay. Hp1, which is highly variable among different PepMV isolates, appeared dispensable for negative-strand synthesis. Hp2, which is characterized by a large U-rich loop, tolerated base-pair changes in its stem as long as they maintained the stem integrity but was very sensitive to changes in the U-rich loop. Hp3, which harbours the conserved potexvirus ACUUAA hexamer motif, was essential for template activity. Template-RNA polymerase binding competition experiments showed that the ACUUAA sequence represents a high-affinity RdRp binding element.


Subject(s)
3' Untranslated Regions , Gene Expression Regulation, Viral , Potexvirus/genetics , RNA, Viral/genetics , Base Sequence , Inverted Repeat Sequences , Molecular Sequence Data , Nucleic Acid Conformation , Plant Diseases/virology , Potexvirus/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism
5.
Sci Rep ; 2: 467, 2012.
Article in English | MEDLINE | ID: mdl-22737403

ABSTRACT

In plants, non-cell autonomous RNA silencing spreads between cells and over long distances. Recent work has revealed insight on the genetic and molecular components essential for cell-to-cell movement of RNA silencing in Arabidopsis. Using a local RNA silencing assay, we report on a distinct mechanism that may govern the short-range (6-10 cell) trafficking of virus-induced RNA silencing from epidermal to neighbouring palisade and spongy parenchyma cells in Nicotiana benthamiana. This process involves a previously unrecognised function of the RNA-dependent RNA polymerase 6 (RDR6) gene. Our data suggest that plants may have evolved distinct genetic controls in intercellular RNA silencing among different types of cells.


Subject(s)
Nicotiana/genetics , Plant Proteins/genetics , RNA Interference , RNA-Directed DNA Polymerase/genetics , Carmovirus/genetics , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Confocal , Mutation , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/metabolism , RNA Transport , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Nicotiana/cytology , Nicotiana/metabolism
6.
Virus Res ; 167(2): 267-72, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22617023

ABSTRACT

Pepino mosaic virus (PepMV)-infected tomato plants were used to develop an in vitro template-dependent system for the study of viral RNA synthesis. Differential sedimentation and sucrose-gradient purification of PepMV-infected tomato extracts resulted in fractions containing a transcriptionally active membrane-bound RNA-dependent RNA polymerase (RdRp). In the presence of Mg(2+) ions, (32)P-labelled UTP and unlabelled ATP, CTP, GTP, the PepMV RdRp catalysed the conversion of endogenous RNA templates into single- and double-stranded (ds) genomic RNAs and three 3'-co-terminal subgenomic dsRNAs. Hybridisation experiments showed that the genomic ssRNA was labelled only in the plus strand, the genomic dsRNA mainly in the plus strand and the three subgenomic dsRNAs equally in both strands. Following removal of the endogenous templates from the membrane-bound complex, the purified template-dependent RdRp could specifically catalyse transcription of PepMV virion RNA, in vitro-synthesized full-length plus-strand RNA and the 3'-termini of both the plus- and minus-strand RNAs. Rabbit polyclonal antibodies against an immunogenic epitope of the PepMV RdRp (anti-RdRp) detected a protein of approximately 164kDa in the membrane-bound and template-dependent RdRp preparations and exclusively inhibited PepMV RNA synthesis when added to the template-dependent in vitro transcription system. The 300 nucleotides long 3'-terminal region of the PepMV genome, containing a stretch of at least 20 adenosine (A) residues, was an adequate exogenous RNA template for RdRp initiation of the minus-strand synthesis but higher transcription efficiency was observed as the number of A residues increased. This observation might indicate a role for the poly(A)-tail in the formation and stabilisation of secondary structure(s) essential for initiation of transcription. The template-dependent specific RdRp system described in this article will facilitate identification of RNA elements and host components required for PepMV RNA synthesis.


Subject(s)
Potexvirus/enzymology , Potexvirus/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Solanum lycopersicum/virology , Coenzymes/metabolism , Magnesium/metabolism , Plant Extracts/metabolism
7.
Sci Rep ; 1: 73, 2011.
Article in English | MEDLINE | ID: mdl-22355592

ABSTRACT

In inducing photoperiodic conditions, plants produce a signal dubbed "florigen" in leaves. Florigen moves through the phloem to the shoot apical meristem (SAM) where it induces flowering. In Arabidopsis, the FLOWERING LOCUS T (FT) protein acts as a component of this phloem-mobile signal. However whether the transportable FT mRNA also contributes to systemic florigen signalling remains to be elucidated. Using non-conventional approaches that exploit virus-induced RNA silencing and meristem exclusion of virus infection, we demonstrated that the ArabidopsisFT mRNA, independent of the FT protein, can move into the SAM. Viral ectopic expression of a non-translatable FT mRNA promoted earlier flowering in the short-day (SD) Nicotiana tabacum Maryland Mammoth tobacco in SD. These data suggest a possible role for FT mRNA in systemic floral signalling, and also demonstrate that cis-transportation of cellular mRNA into SAM and meristem exclusion of pathogenic RNAs are two mechanistically distinct processes.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Flowers , RNA, Messenger/physiology , Signal Transduction/physiology , Arabidopsis/genetics
8.
J Virol ; 80(21): 10743-51, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16928757

ABSTRACT

Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.


Subject(s)
Luteoviridae/metabolism , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Amino Acid Sequence , Avena/virology , Base Sequence , Luteoviridae/genetics , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , Substrate Specificity , Viral Proteins/genetics
9.
Virus Genes ; 33(1): 33-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16791416

ABSTRACT

The complete nucleotide sequences of two double-stranded (ds) RNA molecules, S1 (1,744 bp) and S2 (1,567 bp), isolated from an isolate HP62 of the Himalayan Dutch elm disease fungus, Ophiostoma himal-ulmi, were determined. RNA S1 had the potential to encode a protein, P1, of 539 amino acids (62.7 kDa), which contained sequence motifs characteristic of RNA-dependent RNA polymerases (RdRps). A database search showed that P1 was closely related to RdRps of members of the genus Partitivirus in the family Partitiviridae. RNA S2 had the potential to encode a protein, P2, of 430 amino acids (46.3 kDa), which was related to capsid proteins of members of the genus Partitivirus. Virus particles isolated from isolate HP62 were shown to be isometric with a diameter of 30 nm, and to contain dsRNAs S1 and S2 and a single capsid protein of 46 kDa. N-terminal sequencing of tryptic peptides derived from the capsid protein proved unequivocally that it is encoded by RNA S2 and corresponds to protein P2. It is concluded that O. himal-ulmi isolate HP62 contains a new member of the genus Partitivirus, which is designated Ophiostoma partitivirus 1. A phylogenetic tree of RdRps of members of the family Partitiviridae showed that there are least two RdRp lineages of viruses currently classified in the genus Partitivirus. One of these lineages contained viruses with fungal hosts and viruses with plant hosts, raising the possibility of horizontal transmission of partitiviruses between plants and fungi. The partitivirus RdRp and capsid proteins appear to have evolved in parallel with the capsid proteins evolving much faster than the RdRps.


Subject(s)
Ascomycota/virology , RNA Viruses/chemistry , RNA Viruses/genetics , Amino Acid Sequence , Molecular Sequence Data , RNA Viruses/isolation & purification , RNA Viruses/ultrastructure , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Double-Stranded/ultrastructure , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/ultrastructure , Virion/chemistry , Virion/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...