Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 2963, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536528

ABSTRACT

Widely available low-cost electronics encourage the development of open-source tools for neuroscientific research. In recent years, many neuroscientists recognized the open science movement for its potential to stimulate and encourage science that is less focused on money, and more on robustness, validity, questioning and understanding. Here, we wanted to contribute to this global community by creating a research platform based on a common digital kitchen scale. This everyday ordinary kitchen tool is sometimes used in neuroscience research in various ways; however, its use is limited by sampling rate and inability to store and analyze data. To tackle this problem we developed a Platform for Acoustic STArtle or PASTA. This robust and simple platform enables users to obtain data from kitchen scale load cells at a high sampling rate, store it and analyze it. Here, we used it to analyze acoustic startle and prepulse inhibition sensorimotor gating in rats treated intracerebroventricularly with streptozotocin, but the system can be easily modified and upgraded for other purposes. In accordance with open science principles, we shared complete hardware design with instructions. Furthermore, we also disclose our software codes written for PASTA data acquisition (C++, Arduino) and acoustic startle experimental protocol (Python) and analysis (ratPASTA R package-R-based Awesome Toolbox for PASTA, and pastaWRAP-Python wrapper package for ratPASTA). To further encourage the development of our PASTA platform we demonstrate its sensitivity by using PASTA-gathered data to extract breathing patterns during rat freezing behavior in our experimental protocol.

2.
J Neural Transm (Vienna) ; 124(6): 695-708, 2017 06.
Article in English | MEDLINE | ID: mdl-28470423

ABSTRACT

Accumulated evidence suggests that the insulin-resistant brain state and cerebral glucose hypometabolism might be the cause, rather than the consequence, of the neurodegeneration found in a sporadic Alzheimer's disease (sAD). We have explored whether the insulin receptor (IR) and the glucose transporter-2 (GLUT2), used here as their markers, are the early targets of intracerebroventricularly (icv) administered streptozotocin (STZ) in an STZ-icv rat model of sAD, and whether their changes are associated with the STZ-induced neuroinflammation. The expression of IR, GLUT2 and glial fibrillary acidic protein (GFAP) was measured by immunofluorescence and western blot analysis in the parietal (PC) and the temporal (TC) cortex, in the hippocampus (HPC) and the hypothalamus. One hour after the STZ-icv administration (1.5 mg/kg), the GFAP immunoreactivity was significantly increased in all four regions, thus indicating the wide spread neuroinflammation, pronounced in the PC and the HPC. Changes in the GLUT2 (increment) and the IR (decrement) expression were mild in the areas close to the site of the STZ injection/release but pronounced in the ependymal lining cells of the third ventricle, thus indicating the possible metabolic implications. These results, together with the finding of the GLUT2-IR co-expression, and also the neuronal IR expression in PC, TC and HPC, indicate that the cerebral GLUT2 and IR should be further explored as the possible sAD etiopathogenic factors. It should be further clarified whether their alterations are the effect of a direct STZ-icv toxicity or they are triggered in a response to STZ-icv induced neuroinflammation.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Glucose Transporter Type 2/metabolism , Inflammation/metabolism , Neuroglia/metabolism , Receptor, Insulin/metabolism , Animals , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Male , Neuroimmunomodulation/physiology , Rats, Wistar , Risk Factors , Streptozocin , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...