Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37959119

ABSTRACT

Turmeric Curcuma longa is a well-known spice with various health benefits, attributed primarily to curcumin. Soxhlet extraction, cold maceration, ultrasound-assisted extraction (UAE), and supercritical fluid extraction were performed, and the content of total phenols, proanthocyanidins, and antioxidants was analysed by UV/VIS spectrophotometry. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was employed to identify and quantify the curcumin content. Supercritical extracts had the highest total phenolic content (538.95 mg GA/100 g material), while the Soxhlet extracts had the highest content of proanthocyanidins (4.77 mg PAC/100 g of material). Extracts obtained by UAE and supercritical extraction have the highest antioxidant potential. Antioxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) was 64.27% and 1750.32 mg Trolox per g dry weight by 2,2-azinobis(3-ethylbenzothiazoline 6 sulphonic acid) (ABTS+•) for the extract obtained by supercritical extraction. The UAE resulted in the highest amount of curcumin (1.91 mg curcumin/g material). A kinetic study showed that extraction yield in supercritical extracts decreased with increasing temperature and that the content of isolated curcumin was inversely proportional to solvent-to-feed ratio (S/F). The present study has confirmed that turmeric is an excellent source of antioxidants, such as curcumin, that play an important role in reducing cellular stress by neutralising free radicals.

2.
Polymers (Basel) ; 15(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36850186

ABSTRACT

The presented study focuses on the modification of polypropylene (PP) film with tetraethyl orthosilicate (TEOS) under heterogeneous conditions via polydopamine/polyethylene imine (PDA/PEI) chemistry using a facile dip-coating procedure to attain hydrophilic mineral-rich surfaces. Thus, the resulting PP-based films were further immersed in ion-rich simulated body fluid (SBF) to deposit Ca-based minerals onto the film's surfaces efficiently. In addition, the chemical reaction mechanism on PP film was proposed, and mineralisation potential inspected by determination of functional groups of deposits, zeta potential, hydrophilicity and surface morphology/topography using Fourier transform infrared (FTIR) spectroscopy, streaming potential, water contact angle (WCA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The obtained results show the improved wettability of samples on account of PDA inclusion (WCA was reduced from 103° for pure PP film to 28° for PDA-modified film), as well as the presence of functional groups, due to the PDA/PEI/TEOS surface functionalisation, increased the ability of minerals to nucleate on the PP film's surface when it was exposed to an SBF medium. Moreover, the higher surface roughness due to the silica coatings influenced the enhanced anchoring and attachment of calcium phosphate (CaP), revealing the potential of such a facile approach to modify the chemically inert PP films, being of particular interest in different fields, including regenerative medicine.

3.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572312

ABSTRACT

Herein, we prepared a series of nanocomposite membranes based on chitosan (CS) and three compositionally and structurally different N-doped graphene derivatives. Two-dimensional (2D) and quasi 1D N-doped reduced graphene oxides (N-rGO) and nanoribbons (N-rGONRs), as well as 3D porous N-doped graphitic polyenaminone particles (N-pEAO), were synthesized and characterized fully to confirm their graphitic structure, morphology, and nitrogen (pyridinic, pyrrolic, and quaternary or graphitic) group contents. The largest (0.07%) loading of N-doped graphene derivatives impacted the morphology of the CS membrane significantly, reducing the crystallinity, tensile properties, and the KOH uptake, and increasing (by almost 10-fold) the ethanol permeability. Within direct alkaline ethanol test cells, it was found that CS/N rGONRs (0.07 %) membrane (Pmax. = 3.7 mWcm-2) outperformed the pristine CS membrane significantly (Pmax. = 2.2 mWcm-2), suggesting the potential of the newly proposed membranes for application in direct ethanol fuel cells.


Subject(s)
Electric Power Supplies , Ethanol/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Alkalies/chemistry , Chitosan/chemistry , Feasibility Studies , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...