Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev B ; 100(2)2019 Jul.
Article in English | MEDLINE | ID: mdl-38845604

ABSTRACT

A metamaterial approach is capable of drastically increasing the critical temperature, T c , of composite metal-dielectric superconductors as demonstrated by the tripling of T c that was observed in bulk Al-Al2O3 coreshell metamaterials. A theoretical model based on the Maxwell-Garnett approximation provides a microscopic explanation of this effect in terms of electron-electron pairing mediated by a hybrid plasmon-phonon excitation. We report an observation of this excitation in Al-Al2O3 core-shell metamaterials using inelastic neutron scattering. This result provides support for this mechanism of superconductivity in metamaterials.

2.
Sci Rep ; 7: 41713, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181521

ABSTRACT

Since its discovery, graphene has held great promise as a two-dimensional (2D) metal with massless carriers and, thus, extremely high-mobility that is due to the character of the band structure that results in the so-called Dirac cone for the ideal, perfectly ordered crystal structure. This promise has led to only limited electronic device applications due to the lack of an energy gap which prevents the formation of conventional device geometries. Thus, several schemes for inducing a semiconductor band gap in graphene have been explored. These methods do result in samples whose resistivity increases with decreasing temperature, similar to the temperature dependence of a semiconductor. However, this temperature dependence can also be caused by highly diffusive transport that, in highly disordered materials, is caused by Anderson-Mott localization and which is not desirable for conventional device applications. In this letter, we demonstrate that in the diffusive case, the conventional description of the insulating state is inadequate and demonstrate a method for determining whether such transport behavior is due to a conventional semiconductor band gap.

3.
Sci Rep ; 6: 21836, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26915411

ABSTRACT

The discovery of low-dimensional metallic systems such as high-mobility metal oxide field-effect transistors, the cuprate superconductors, and conducting oxide interfaces (e.g., LaAlO3/SrTiO3) has stimulated research into the nature of electronic transport in two-dimensional systems given that the seminal theory for transport in disordered metals predicts that the metallic state cannot exist in two dimensions (2D). In this report, we demonstrate the existence of a metal-insulator transition (MIT) in highly disordered RuO2 nanoskins with carrier concentrations that are one-to-six orders of magnitude higher and with mobilities that are one-to-six orders of magnitude lower than those reported previously for 2D oxides. The presence of an MIT and the accompanying atypical electronic characteristics place this form of the oxide in a highly diffusive, strong disorder regime and establishes the existence of a metallic state in 2D that is analogous to the three-dimensional case.

4.
Sci Rep ; 6: 19939, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26860789

ABSTRACT

Reports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems must be insulating. The existence of a metallic state for such a wide range of 2D systems thus reveals a wide gap in our understanding of 2D transport that has become more important as research in 2D systems expands. A key to understanding the 2D metallic state is the metal-insulator transition (MIT). In this report, we explore the nature of a disorder induced MIT in functionalized graphene, a model 2D system. Magneto-transport measurements show that weak-localization overwhelmingly drives the transition, in contradiction to theoretical assumptions that enhanced electron-electron interactions dominate. These results provide the first detailed picture of the nature of the transition from the metallic to insulating states of a 2D system.

5.
Sci Rep ; 5: 15777, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26522015

ABSTRACT

Recent experiments have shown the viability of the metamaterial approach to dielectric response engineering for enhancing the transition temperature, Tc, of a superconductor. In this report, we demonstrate the use of Al2O3-coated aluminium nanoparticles to form the recently proposed epsilon near zero (ENZ) core-shell metamaterial superconductor with a Tc that is three times that of pure aluminium. IR reflectivity measurements confirm the predicted metamaterial modification of the dielectric function thus demonstrating the efficacy of the ENZ metamaterial approach to Tc engineering. The developed technology enables efficient nanofabrication of bulk aluminium-based metamaterial superconductors. These results open up numerous new possibilities of considerable Tc increase in other simple superconductors.

6.
Sci Rep ; 4: 7321, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25471303

ABSTRACT

A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

7.
Phys Rev Lett ; 87(19): 197004, 2001 Nov 05.
Article in English | MEDLINE | ID: mdl-11690447

ABSTRACT

We have studied the transport properties of disordered WSi films near the metal/insulator transition (MIT) and we have also reviewed the data for several other disordered materials near their MIT. In all cases, we found the presence of enhanced superconductivity. We constructed a superconductivity "phase diagram" (i.e., T(c) versus sigma) for each system, which reveals a striking correlation: In all cases, T(c) values are significantly enhanced only for samples whose conductivities lie within a narrow range on the metallic side of, and moderately near, the MIT. We present a heuristic model to explain this phenomenon.

8.
Science ; 263(5152): 1416-8, 1994 Mar 11.
Article in English | MEDLINE | ID: mdl-17776512

ABSTRACT

Evidence of structural inhomogeneities in two high-transition-temperature superconductors, YBa(2)Cu(3)O(7-delta) and Nd2-xCexCuO4-y, is presented. When samples were illuminated by highly collimated x-rays produced on a synchrotron wiggler, small changes in the lattice were detected over a spatial scale of 10 micrometers. These changes are interpreted as evidence of variations in the oxygen content in one case and in the cerium content in the other; both affect the superconducting properties. The existence of such structural inhomogeneities brings into question whether exotic experimental results obtained from superconducting materials with high transition temperatures actually reflect intrinsic properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...