Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(10): e202302940, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38078547

ABSTRACT

Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deactivation mechanism both in solution and films remains lacking. In this study, we synthesized and characterized spectroscopically two AIE luminogens: 5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (TTY) and 5'-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2'-bithiophene]-5-carbaldehyde (TTO). Photophysical and theoretical analyses were conducted in both solution and PMMA films to understand the deactivation mechanism of TTY and TTO. In diluted solutions, the emission behavior of TTY and TTO is influenced by the solvent, and the deactivation of the excited state can occur via locally excited (LE) or twisted intramolecular charge transfer (TICT) state. In PMMA films, rotational and translational movements are constrained, necessitating emission solely from the LE state. Nevertheless, in the PMMA film, excimers-like structures form, resulting in the emergence of a longer wavelength band and a reduction in emission intensity. The zenith of emission intensity occurs when molecules are dispersed at higher concentrations within PMMA, effectively diminishing the likelihood of excimer-like formations. Luminescent Solar Concentrators (LSC) were fabricated to validate these findings, and the optical efficiency was studied at varying concentrations of luminogen and PMMA.

2.
Anal Chem ; 86(20): 10246-51, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25225956

ABSTRACT

Shell-isolated nanoparticles (SHINs) nanostructures provide a versatile substrate where the localized surface plasmon resonances (LSPRs) are well-defined. For SHINEF, the silver (or gold) metal core is protected by the SiO2 coating, which is thicker than the critical distance for minimum quenching by the metal. In the present work, it is shown that an increase in the SHINEF enhancement factor may be achieved by inducing SHIN aggregation with electrolytes in solution. The proof of concept is demonstrated using NaCl as aggregating agent, although other inorganic salts will also aggregate SHIN nanoparticles. As much as a 10-fold enhancement in the SHINEF enhancement factor (EF) may be achieved by tuning the electrolyte concentrations in solution. The SHINEF experiments include the study of the aggregation effect controlling gold SHIN's surface concentration via spraying. Au-SHINs are sprayed onto layer-by-layer (LbL) and Langmuir-Blodgett (LB) films, and samples are fabricated using fluorophores with low and also high quantum yield.

3.
PLoS One ; 7(11): e48657, 2012.
Article in English | MEDLINE | ID: mdl-23185270

ABSTRACT

The vast application of fluorescent semiconductor nanoparticles (NPs) or quantum dots (QDs) has prompted the development of new, cheap and safer methods that allow generating QDs with improved biocompatibility. In this context, green or biological QDs production represents a still unexplored area. This work reports the intracellular CdTe QDs biosynthesis in bacteria. Escherichia coli overexpressing the gshA gene, involved in glutathione (GSH) biosynthesis, was used to produce CdTe QDs. Cells exhibited higher reduced thiols, GSH and Cd/Te contents that allow generating fluorescent intracellular NP-like structures when exposed to CdCl(2) and K(2)TeO(3). Fluorescence microscopy revealed that QDs-producing cells accumulate defined structures of various colors, suggesting the production of differently-sized NPs. Purified fluorescent NPs exhibited structural and spectroscopic properties characteristic of CdTe QDs, as size and absorption/emission spectra. Elemental analysis confirmed that biosynthesized QDs were formed by Cd and Te with Cd/Te ratios expected for CdTe QDs. Finally, fluorescent properties of QDs-producing cells, such as color and intensity, were improved by temperature control and the use of reducing buffers.


Subject(s)
Cadmium Compounds/metabolism , Escherichia coli/metabolism , Glutathione/metabolism , Nanoparticles/chemistry , Tellurium/metabolism , Citrates/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Genes, Bacterial/genetics , Microscopy, Fluorescence , Nanoparticles/ultrastructure , Particle Size , Quantum Dots , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
4.
PLoS One ; 7(1): e30741, 2012.
Article in English | MEDLINE | ID: mdl-22292028

ABSTRACT

Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH)-capped CdTe QDs (CdTe-GSH) resembling conditions found in biological systems is described. Using only CdCl(2), K(2)TeO(3) and GSH, highly fluorescent QDs were obtained under pH, temperature, buffer and oxygen conditions that allow microorganisms growth. These CdTe-GSH NPs displayed similar size, chemical composition, absorbance and fluorescence spectra and quantum yields as QDs synthesized using more complicated and expensive methods.CdTe QDs were not freely incorporated into eukaryotic cells thus favoring their biocompatibility and potential applications in biomedicine. In addition, NPs entry was facilitated by lipofectamine, resulting in intracellular fluorescence and a slight increase in cell death by necrosis. Toxicity of the as prepared CdTe QDs was lower than that observed with QDs produced by other chemical methods, probably as consequence of decreased levels of Cd(+2) and higher amounts of GSH. We present here the simplest, fast and economical method for CdTe QDs synthesis described to date. Also, this biomimetic protocol favors NPs biocompatibility and helps to establish the basis for the development of new, "greener" methods to synthesize cadmium-containing QDs.


Subject(s)
Biocompatible Materials/chemical synthesis , Cadmium/chemistry , Glutathione/chemistry , Quantum Dots , Tellurium/chemistry , Biocompatible Materials/chemistry , Biomimetics/methods , Chemistry, Bioinorganic/methods , Hydrogen-Ion Concentration , Materials Testing , Nanotechnology/methods , Spectrometry, Fluorescence , Spectrometry, X-Ray Emission , Spectrophotometry, Infrared , Temperature , Time Factors
5.
Appl Spectrosc ; 65(8): 838-43, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21819772

ABSTRACT

Coated silver (Ag) colloids synthesized with D-glucose permit the observation of surface-enhanced fluorescence (SEF) and surface-enhanced resonance Raman scattering (SERRS) of the rhodamine B (RhB) molecule. The organic coating formed during the synthesis of the Ag nanostructures was identified by its surface-enhanced Raman scattering (SERS) spectrum as D-gluconic acid. The RhB molecule is used to exemplify the distance dependence of SEF and SERRS on the coated Ag nanostructures. The fluorescence enhancement factor for RhB on D-gluconic acid coated silver nanoparticles was determined experimentally and estimated using a simple model. Further support for the plasmon enhancement is obtained from the fact that the measured fluorescence lifetime of RhB on the silver coated with D-gluconic acid is shorter than that found on a glass surface. A very modest enhancement factor is obtained, as expected for very short distance between RhB and the metal surface. Given the very thin metal-fluorophore separation, estimated from the size of the D-gluconic acid, the energy transfer or fluorescence quenching is still efficient and the SEF enhancement is just overcoming the energy transfer. Therefore, both SEF and SERRS are observed. Notably, the aggregation of coated nanoparticles also increases the enhancement factor for SEF.


Subject(s)
Gluconates/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Colloids , Metal Nanoparticles/ultrastructure , Microscopy, Atomic Force , Particle Size , Spectrometry, Fluorescence , Surface Plasmon Resonance
6.
Appl Spectrosc ; 61(9): 1001-6, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17910798

ABSTRACT

The vibrational spectra and surface-enhanced Raman scattering (SERS) of 1,6-diphenyl-1,3,5-hexatriene (DPH) are discussed. The fundamental vibrational frequencies, overtones, and combinations observed in the infrared and Raman spectra of DPH are reported. The interpretation of the observed vibrational spectra was supported by a complete geometry optimization, followed by vibrational frequency and intensity computations for the cis- and trans- isomers of the DPH using density functional theory at the B3LYP/6-31G(d,p) level of theory. Because the molecule is photo-chemically active on Ag metal surfaces, the best SERS results for silver islands were obtained at low temperature and low energy density of the exciting laser line. DPH SERS on Au films was obtained at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...