Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(50): 47919-47927, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144103

ABSTRACT

A comparison between the physical characteristics of graphite ultrafine particles and the properties of graphite blocks prepared from graphite scrap using bead and conventional ball milling techniques is presented. Industrial-scale bead milling was used to prepare graphite scrap with an initial particle size d50 of 24 µm in the ultrafine range of <10 µm. Bead milling can significantly reduce the production time of ultrafine graphite from graphite scrap from 72 h by ball milling to 10 min. Ultrafine graphite scrap prepared from both ball milling and bead milling yields particles with a similar morphology, with a minor difference in crystalline size La and stacking height Lc observed. Carbon blocks were fabricated from both techniques, yielding carbon blocks with an almost identical microstructure and block density. Blocks from bead milling have slightly higher flexural strength as well as comparable hardness and resistivity. The block's flexural strength, hardness, and resistivity were 68.37 MPa, 99, and 36.9 µΩ·m, respectively, in a bead-milled carbon block and 61.86 MPa, 95.5, and 38.6 µΩ·m, respectively, for a ball-milled carbon block. Bead milling can be applied for the preparation of ultrafine graphite particles and graphite blocks with production that is 9 times faster for the same ultrafine graphite particle output and final product quality.

2.
ACS Omega ; 7(22): 18714-18721, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35694520

ABSTRACT

Easy-to-use and on-site detection of dissolved ammonia are essential for managing aquatic ecosystems and aquaculture products since low levels of ammonia can cause serious health risks and harm aquatic life. This work demonstrates quantitative naked eye detection of dissolved ammonia based on polydiacetylene (PDA) sensors with machine learning classifiers. PDA vesicles were assembled from diacetylene monomers through a facile green chemical synthesis which exhibited a blue-to-red color transition upon exposure to dissolved ammonia and was detectable by the naked eye. The quantitative color change was studied by UV-vis spectroscopy, and it was found that the absorption peak at 640 nm gradually decreased, and the absorption peak at 540 nm increased with increasing ammonia concentration. The fabricated PDA sensor exhibited a detection limit of ammonia below 10 ppm with a response time of 20 min. Also, the PDA sensor could be stably operated for up to 60 days by storing in a refrigerator. Furthermore, the quantitative on-site monitoring of dissolved ammonia was investigated using colorimetric images with machine learning classifiers. Using a support vector machine for the machine learning model, the classification of ammonia concentration was possible with a high accuracy of 100 and 95.1% using color RGB images captured by a scanner and a smartphone, respectively. These results indicate that using the developed PDA sensor, a simple naked eye detection for dissolved ammonia is possible with higher accuracy and on-site detection enabled by the smartphone and machine learning processes.

3.
ACS Appl Mater Interfaces ; 13(40): 48053-48060, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34582172

ABSTRACT

Recently, wearable electric heaters with high durability and low-power operation have attracted much attention due to their potential to change traditional approaches for personal heating management and thermal therapy systems. Here, we report textile-based wearable heaters based on highly durable conductive yarns, which were transformed from traditional cotton yarns through a facile dyeing process of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and ethylene glycol (EG). With the EG post-treatment, the conductive yarns exhibited an electrical conductivity of ∼76 S cm-1 and good stability under repeated cycles of washing and drying. The heating elements made from the conductive yarns showed an excellent distribution of temperature and could be heated up to 150 °C at a sufficiently low driving voltage of 5 V. Also, the heating elements showed stable Joule heating performance under repeated bending stress and 2000 cycles of stretching and releasing. To demonstrate its practical use for on-body heating systems, a lightweight and air-breathable thermal wristband was demonstrated by sewing the conductive yarns onto a fabric with a simple circuit structure. From these results, we believe that our strategy to obtain highly conductive and durable yarns can be utilized in various applications, including medical heat therapy and personal heating management systems.

4.
ACS Appl Mater Interfaces ; 9(14): 12812-12822, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28339183

ABSTRACT

Polyhedral oligomeric silsesquioxane (POSS)-based materials, poly-POSS-Tn [n = 8 (1), 10 (2), 12 (3), and mix (4)], were prepared in high yields via free radical polymerization of corresponding pure forms of methacrylate-functionalized POSS monomers, MMA-POSS-Tn (n = 8, 10, 12), and the mixture form, MMA-POSS-Tmix. Powder X-ray diffraction (XRD) spectra and BET analysis indicate that 1-4 are amorphous materials with high surface areas (683-839 m2 g-1). The surface areas and total pore volumes follow the trend: poly-POSS-T12 > poly-POSS-T10 > poly-POSS-Tmix > poly-POSS-T8. In addition, on the basis of Barrett-Joyner-Halenda (BJH) analysis, poly-POSS-T12 contains the highest amount of mesopores. The Pd nanoparticles immobilized on poly-POSS-Tn [n = 8 (5), 10 (6), 12 (7), and mix (8)] are well dispersed with 4-6 wt % Pd content and similar average particle sizes of 6.2-6.5 nm, according to transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDX) and microwave plasma-atomic emission spectroscopy (MP-AES). At 90 °C, the stabilized Pd nanoparticles in 5-8 catalyzed aerobic oxidation of benzyl alcohol to benzaldehyde in 72-100% yields at 6 h using a mixture of a H2O/Pluronic (P123) solution. The PdNp@poly-POSS-T8 catalyst (5) exhibited the lowest catalytic activity, as a result of its lowest surface areas, total pore volumes, and amounts of mesopores. With the catalyst 8, various benzyl alcohol derivatives were converted to the corresponding aldehydes in good to excellent yields. However, with alcoholic substrates featuring electron-withdrawing substituents, high conversions were achieved with 1 equiv of K2CO3 additive and longer reaction times.

5.
Sci Rep ; 5: 17560, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26634811

ABSTRACT

Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green's function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences.


Subject(s)
DNA/genetics , Graphite/chemistry , Sequence Analysis, DNA , DNA/chemistry , Molecular Dynamics Simulation , Nanopores
6.
Inorg Chem ; 51(22): 12266-72, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23134535

ABSTRACT

Novel phthalimide and o-sulfobenzimide-functionalized silsesquioxanes were successfully synthesized via nucleophilic substitution reactions from octakis(3-chloropropyl)octasilsesquioxane. Surprisingly, the formation of deca- and dodecasilsesquioxanes cages was discovered during substitution with phthalimide, but only octasilsesquioxane maintained a cage in the o-sulfobenzimide substitution reaction. Moreover, we report the electronic effect of nitrogen nucleophiles to promote cage-rearrangement of inorganic silsesquioxane core for the first time. Structures of products were confirmed by (1)H, (13)C, and (29)Si NMR spectroscopy, ESI-MS analysis, and single-crystal X-ray diffraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...