Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 2366, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759543

ABSTRACT

Dispersal shapes population connectivity and plays a critical role in marine metacommunities. Prominent species for coastal socioecological systems, such as jellyfish and spiny lobsters, feature long pelagic dispersal phases (LPDPs), which have long been overlooked. Here, we use a cross-scale approach combining field surveys of these species with a high-resolution hydrodynamic model to decipher the underlying mechanisms of LPDP patterns in northwestern Mediterranean shores. We identified basin-scale prevailing dispersal routes and synchronic year-to-year patterns tightly linked to prominent circulation features typical of marginal seas and semienclosed basins, with an outstanding role of a retentive source area replenishing shores and potentially acting as a pelagic nursery area. We show how the atmospheric forcing of the ocean, a marked hydrological driver of the Mediterranean Sea, modulates dispersal routes and sources of LPDP at interannual scales. These findings represent a crucial advance in our understanding of the functioning of metapopulations of species with LPDP in marginal seas and may contribute to the effective management of coastal ecosystem services in the face of climate change.


Subject(s)
Ecosystem , Scyphozoa , Animals , Mediterranean Sea , Climate Change
2.
Mar Environ Res ; 179: 105690, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35853313

ABSTRACT

The North Sea and the Baltic Sea, including Danish coastal waters, have experienced a drastic decline in eelgrass Zostera marina coverage during the past century. Around 1900, eelgrass meadows covered about 6700 km2 of Danish coastal waters while the current potential distribution area is only about one third of this. In some areas, the potential distribution area is far from realized, and restoration efforts are needed to assist recovery. Such efforts are challenging, and resource-demanding and careful site selection is, therefore, important. In the present study, we aim to identify the connectivity of eelgrass populations as a basis for guiding site selection for restoration. We developed a coupled biophysical model to study eelgrass dispersal in the Kattegat. Partly submerged particles simulated the dispersal of reproductive eelgrass shoots containing seeds during the flowering season July-September. We then used network analysis to identify the potential connectivity between populations. We evaluated connectivity based on In-strength, Betweenness and Eigenvector centrality metrics and identified key areas in the Kattegat such as the central part of Aalborg Bay, to be considered to restore the network of Z. marina patches. The study proves the potentials of combining hydrodynamic models and network analysis to support marine conservation and planning, and highlights the importance of collaboration between ecologists, oceanographers, and practitioners in this endeavour.


Subject(s)
Zosteraceae , Baltic States , North Sea , Seasons
4.
Sci Rep ; 12(1): 322, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013385

ABSTRACT

The global trade in cephalopods is a multi-billion dollar business involving the fishing and production of more than ten commercially valuable species. It also contributes, in whole or in part, to the subsistence and economic livelihoods of thousands of coastal communities around the world. The importance of cephalopods as a major cultural, social, economic, and ecological resource has been widely recognised, but research efforts to describe the extent and scope of the global cephalopod trade are limited. So far, there are no specific regulatory and monitoring systems in place to analyse the traceability of the global trade in cephalopods at the international level. To understand who are the main global players in cephalopod seafood markets, this paper provides, for the first time, a global overview of the legal trade in cephalopods. Twenty years of records compiled in the UN COMTRADE database were analysed. The database contained 115,108 records for squid and cuttlefish and 71,659 records for octopus, including commodity flows between traders (territories or countries) weighted by monetary value (USD) and volume (kg). A theoretical network analysis was used to identify the emergent properties of this large trade network by analysing centrality measures that revealed key insights into the role of traders. The results illustrate that three countries (China, Spain, and Japan) led the majority of global market movements between 2000 and 2019. Based on volume and value, as well as the number of transactions, 11 groups of traders were identified. The leading cluster consisted of only eight traders, who dominated the cephalopod market in Asia (China, India, South Korea, Thailand, and Vietnam), Europe (the Netherlands, and Spain), and the USA. This paper identifies the countries and territories that acted as major importers or exporters, the best-connected traders, the hubs or accumulators, the modulators, the main flow routes, and the weak points of the global cephalopod trade network over the last 20 years. This knowledge of the network is crucial to move towards an environmentally sustainable, transparent, and food-secure global cephalopod trade.

5.
Sci Rep ; 11(1): 8803, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888813

ABSTRACT

Increasing sea temperature is a driver of change for many fish traits, particularly for fast-growing epipelagic species with short life spans. With warming, altered spawning phenology and faster growth may produce substantially larger body sizes of the new cohort, affecting fishery productivity. We present an individual-based model (IBM) that predicts the distribution of fish length at catch under observed and projected thermal scenarios, accounting for mortality, temperature-dependent spawning phenology, temperature- and photoperiod- dependent growth. This IBM was demonstrated with Coryphaena hippurus (common dolphinfish), a circumglobally-distributed and highly thermophilic species sustaining commercial and recreational fisheries where it is present. The model projected a 13.2% increase in the average length at catch under marine heatwave conditions compared to the current thermal regime (1995-2005 average). Projections under RCP scenarios 4.5 and 8.5 by the end of the century led to 5.1% and 12.8% increase in average length, respectively. Furthermore, these thermal scenarios affected spawning phenology differently, producing higher variance in body size under RCP 8.5 scenario with respect to marine heatwave conditions. This study highlights how the environmental effects of climate change can alter the distribution of species length at catch.

6.
Sci Rep ; 11(1): 9118, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907282

ABSTRACT

The use of Graph Theory on social media data is a promising approach to identify emergent properties of the complex physical and cognitive interactions that occur between humans and nature. To test the effectivity of this approach at global scales, Instagram posts from fourteen natural areas were selected to analyse the emergent discourse around these areas. The fourteen areas, known to provide key recreational, educational and heritage values, were investigated with different centrality metrics to test the ability of Graph Theory to identify variability in ecosystem social perceptions and use. Instagram data (i.e., hashtags associated to photos) was analysed with network centrality measures to characterise properties of the connections between words posted by social media users. With this approach, the emergent properties of networks of hashtags were explored to characterise visitors' preferences (e.g., cultural heritage or nature appreciation), activities (e.g., diving or hiking), preferred habitats and species (e.g., forest, beach, penguins), and feelings (e.g., happiness or place identity). Network analysis on Instagram hashtags allowed delineating the users' discourse around a natural area, which provides crucial information for effective management of popular natural spaces for people.

7.
Sci Total Environ ; 733: 139367, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32446087

ABSTRACT

Ecological connectivity in coastal oceanic waters is mediated by dispersion of the early life stages of marine organisms and conditions the structure of biological communities and the provision of ecosystem services. Integrated management strategies aimed at ensuring long-term service provision to society do not currently consider the importance of dispersal and larval connectivity. A spatial optimization model is introduced to maximise the potential provision of ecosystem services in coastal areas by accounting for the role of dispersal and larval connectivity. The approach combines a validated coastal circulation model that reproduces realistic patterns of larval transport along the coast, which ultimately conditions the biological connectivity and productivity of an area, with additional spatial layers describing potential ecosystem services. The spatial optimization exercise was tested along the coast of Central Chile, a highly productive area dominated by the Humboldt Current. Results show it is unnecessary to relocate existing management areas, as increasing no-take areas by 10% could maximise ecosystem service provision, while improving the spatial representativeness of protected areas and minimizing social conflicts. The location of protected areas was underrepresented in some sections of the study domain, principally due to the restriction of the model to rocky subtidal habitats. Future model developments should encompass the diversity of coastal ecosystems and human activities to inform integrative spatial management. Nevertheless, the spatial optimization model is innovative not only for its integrated ecosystem perspective, but also because it demonstrates that it is possible to incorporate time-varying biophysical connectivity within the optimization problem, thereby linking the dynamics of exploited populations produced by the spatial management regime.

8.
PLoS One ; 12(5): e0176758, 2017.
Article in English | MEDLINE | ID: mdl-28481886

ABSTRACT

Fishing is a major source of human impact, reducing density and size of a wide range of exploited species in comparison to areas exhibiting strong regulations (no-take and partially protected areas, including Territorial Use Rights for Fisheries, TURFs). Since size and density might have important consequences on reproduction, and therefore natural re-seeding, we monitored adult size, density and potential fecundity of the keyhole limpet (Fissurella latimarginata) and the red sea urchin (Loxechinus albus) in areas under two fishing regimes (TURFs and Open Access Areas, OAAs). Analyzing the distribution of suitable habitats, we predict spatial patterns of potential egg production, to identify reproductive hotspots along the central coast of Chile. The current system of TURFs in central Chile showed higher potential egg production of F. latimarginata and of L. albus than expected under a complete OAAs scenario (67 and 52% respectively). Potential egg production showed more than a twofold reduction when the complete TURFs scenario was compared against complete OAAs condition in both species. Individual size and density explained between 60% and 100% of the variability in potential egg production, suggesting the importance of the enhancement of both biological variables in TURFs in Chile. Potential egg production for both species in the northern part of the studied domain was higher due to the combined effect of (a) suitable habitat and (b) concentration of TURFs. Our results suggest that partially protected areas, such as TURFs can significantly enhance the production of propagules that could seed exploited areas.


Subject(s)
Eggs , Fishes , Invertebrates/physiology , Animals , Chile , Conservation of Natural Resources , Fertility
9.
Sci Total Environ ; 533: 122-32, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26151656

ABSTRACT

Ecosystem-based management implies understanding feedbacks between ecosystems and society. Such understanding can be approached with the Drivers-Pressures-State change-Impacts-Response framework (DPSIR), incorporating stakeholders' preferences for ecosystem services to assess impacts on society. This framework was adapted to six locations in the central coast of Chile, where artisanal fisheries coexist with an increasing influx of tourists, and a set of fisheries management areas alternate with open access areas and a no-take Marine Protected Area (MPA). The ecosystem services in the study area were quantified using biomass and species richness in intertidal and subtidal areas as biological indicators. The demand for ecosystem services was elicited by interviews to the principal groups of users. Our results evidenced decreasing landings and a negative perception of fishermen on temporal trends of catches. The occurrence of recreational fishing was negligible, although the consumption of seafood by tourists was relatively high. Nevertheless, the consumption of organisms associated to the study system was low, which could be linked, amongst other factors, to decreasing catches. The comparison of biological indicators between management regimens provided variable results, but a positive effect of management areas and the MPA on some of the metrics was observed. The prioritising of ecosystem attributes by tourists was highly homogenous across the six locations, with "scenic beauty" consistently selected as the preferred attribute, followed by "diversity". The DPSIR framework illustrated the complex interactions existing in these locations, with weak linkages between society's priorities, existing management objectives and the state of biological communities. Overall, this work improved our knowledge on relations between components of coastal areas in central Chile, of paramount importance to advance towards an ecosystem-based management in the area.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Chile , Fisheries , Recreation
10.
PLoS One ; 10(2): e0116638, 2015.
Article in English | MEDLINE | ID: mdl-25671316

ABSTRACT

We analyzed the movements of Atlantic tuna (Thunnus thynnus L.) in the Mediterranean Sea using data from 2 archival tags and 37 pop-up satellite archival tags (PAT). Bluefin tuna ranging in size from 12 to 248 kg were tagged on board recreational boats in the western Mediterranean and the Adriatic Sea between May and September during two different periods (2000 to 2001 and 2008 to 2012). Although tuna migrations between the Mediterranean Sea and the Atlantic Ocean have been well reported, our results indicate that part of the bluefin tuna population remains in the Mediterranean basin for much of the year, revealing a more complex population structure. In this study we demonstrate links between the western Mediterranean, the Adriatic and the Gulf of Sidra (Libya) using over 4336 recorded days of location and behavior data from tagged bluefin tuna with a maximum track length of 394 days. We described the oceanographic preferences and horizontal behaviors during the spawning season for 4 adult bluefin tuna. We also analyzed the time series data that reveals the vertical behavior of one pop-up satellite tag recovered, which was attached to a 43.9 kg tuna. This fish displayed a unique diving pattern within 16 days of the spawning season, suggesting a use of the thermocline as a thermoregulatory mechanism compatible with spawning. The results obtained hereby confirm that the Mediterranean is clearly an important habitat for this species, not only as spawning ground, but also as an overwintering foraging ground.


Subject(s)
Behavior, Animal , Ecosystem , Electrical Equipment and Supplies , Perciformes , Animal Migration , Animals , Mediterranean Sea , Oceanography , Spacecraft
11.
PLoS One ; 8(9): e73687, 2013.
Article in English | MEDLINE | ID: mdl-24066063

ABSTRACT

To date, there are numerous transport simulation studies demonstrating the relevance of the hydrodynamics for the advection, dispersion and recruitment of early stages of marine organisms. However, the lack of data has conditioned the use of realistic locations for the model setup and configuration in transport studies. This work (I) demonstrates the key role played by the use of the realistic initial position of the eggs of small pelagic fishes in the analysis of late-larval recruitment in coastal nursery areas and (II) provides a general solution for deriving future egg positions and abundances from adult biomass obtained from acoustic surveys and available fecundity data. Using European anchovy in the NW Mediterranean as a case study, we first analyzed the impact of the initial location, timing, egg buoyancy and diel vertical migration of larvae on the potential late-larval recruitment to coastal areas. The results suggested that prior knowledge of the initial spawning grounds may substantially affect the estimates of potential recruitment. We then integrated biological and acoustics-derived data (the biomass and size structure, sex ratio, a weight-batch fecundity model, mean weight, number of fish and mean spawning) to build a predictive model for interannual egg production. This model was satisfactorily contrasted with field data for two years obtained with the Daily Egg Production Method (DEPM). We discuss our results in the context of the fluctuations of European anchovy egg abundance from 2003 through 2010 in the NW Mediterranean and in terms of the potential applicability of the acoustics-based spatial predictive egg production model.


Subject(s)
Fishes/physiology , Animals , Eggs , Hydrodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...