Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
ACS Photonics ; 11(3): 941-949, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38523748

ABSTRACT

Optical microcavities confine light to wavelength-scale volumes and are a key component for manipulating and enhancing the interaction of light, vacuum states, and matter. Current microcavities are constrained to a small number of spatial mode profiles. Imaging cavities can accommodate complicated modes but require an externally preshaped input. Here, we experimentally demonstrate a visible-wavelength, metasurface-based holographic microcavity that overcomes these limitations. The micrometer-scale metasurface cavity fulfills the round-trip condition for a designed mode with a complex-shaped intensity profile and thus selectively enhances light that couples to this mode, achieving a spectral bandwidth of 0.8 nm. By imaging the intracavity mode, we show that the holographic mode changes quickly with the cavity length and that the cavity displays the desired spatial mode profile only close to the design cavity length. When a metasurface is placed on a distributed Bragg reflector and steep phase gradients are realized, the correct choice of the reflector's top layer material can boost metasurface performance considerably. The applied forward-design method can be readily transferred to other spectral regimes and mode profiles.

3.
Nano Lett ; 24(8): 2637-2642, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38345784

ABSTRACT

Surface plasmon polaritons (SPPs) can confine and guide light in nanometer volumes and are ideal tools for achieving electric field enhancement and the construction of nanophotonic circuitry. The realization of the highest field strengths and fastest switching requires confinement also in the temporal domain. Here, we demonstrate a tapered plasmonic waveguide with an optimized grating structure that supports few-cycle surface plasmon polaritons with >70 THz bandwidth while achieving >50% light-field-to-plasmon coupling efficiency. This enables us to observe the─to our knowledge─shortest reported SPP wavepackets. Using time-resolved photoelectron microscopy with suboptical-wavelength spatial and sub-10 fs temporal resolution, we provide full spatiotemporal imaging of co- and counter-propagating few-cycle SPP wavepackets along tapered plasmonic waveguides. By comparing their propagation, we track the evolution of the laser-plasmon phase, which can be controlled via the coupling conditions.

4.
ACS Nano ; 18(4): 3187-3198, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38230651

ABSTRACT

Metasurfaces, optics made from subwavelength-scale nanostructures, have been limited to millimeter-sizes by the scaling challenge of producing vast numbers of precisely engineered elements over a large area. In this study, we demonstrate an all-glass 100 mm diameter metasurface lens (metalens) comprising 18.7 billion nanostructures that operates in the visible spectrum with a fast f-number (f/1.5, NA = 0.32) using deep-ultraviolet (DUV) projection lithography. Our work overcomes the exposure area constraints of lithography tools and demonstrates that large metasurfaces are commercially feasible. Additionally, we investigate the impact of various fabrication errors on the imaging quality of the metalens, several of which are specific to such large area metasurfaces. We demonstrate direct astronomical imaging of the Sun, the Moon, and emission nebulae at visible wavelengths and validate the robustness of such metasurfaces under extreme environmental thermal swings for space applications.

5.
Opt Express ; 31(19): 31308-31315, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710653

ABSTRACT

Achieving high repeatability and efficiency in laser-induced strong shock wave excitation remains a significant technical challenge, as evidenced by the extensive efforts undertaken at large-scale national laboratories to optimize the compression of light element pellets. In this study, we propose and model a novel optical design for generating strong shocks at a tabletop scale. Our approach leverages the spatial and temporal shaping of multiple laser pulses to form concentric laser rings on condensed matter samples. Each laser ring initiates a two-dimensional focusing shock wave that overlaps and converges with preceding shock waves at a central point within the ring. We present preliminary experimental results for a single ring configuration. To enable high-power laser focusing at the micron scale, we demonstrate experimentally the feasibility of employing dielectric metasurfaces with exceptional damage threshold, experimentally determined to be 1.1 J/cm2, as replacements for conventional optics. These metasurfaces enable the creation of pristine, high-fluence laser rings essential for launching stable shock waves in materials. Herein, we showcase results obtained using a water sample, achieving shock pressures in the gigapascal (GPa) range. Our findings provide a promising pathway towards the application of laser-induced strong shock compression in condensed matter at the microscale.

6.
Sci Adv ; 9(24): eadh0369, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37327327

ABSTRACT

Optical singularities play a major role in modern optics and are frequently deployed in structured light, super-resolution microscopy, and holography. While phase singularities are uniquely defined as locations of undefined phase, polarization singularities studied thus far are either partial, i.e., bright points of well-defined polarization, or are unstable for small field perturbations. We demonstrate a complete, topologically protected polarization singularity; it is located in the four-dimensional space spanned by the three spatial dimensions and the wavelength and is created in the focus of a cascaded metasurface-lens system. The field Jacobian plays a key role in the design of such higher-dimensional singularities, which can be extended to multidimensional wave phenomena, and pave the way for unconventional applications in topological photonics and precision sensing.


Subject(s)
Holography , Lenses , Microscopy
7.
Science ; 380(6640): 59-63, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37023199

ABSTRACT

Extreme ultraviolet (EUV) radiation is a key technology for material science, attosecond metrology, and lithography. Here, we experimentally demonstrate metasurfaces as a superior way to focus EUV light. These devices exploit the fact that holes in a silicon membrane have a considerably larger refractive index than the surrounding material and efficiently vacuum-guide light with a wavelength of ~50 nanometers. This allows the transmission phase at the nanoscale to be controlled by the hole diameter. We fabricated an EUV metalens with a 10-millimeter focal length that supports numerical apertures of up to 0.05 and used it to focus ultrashort EUV light bursts generated by high-harmonic generation down to a 0.7-micrometer waist. Our approach introduces the vast light-shaping possibilities provided by dielectric metasurfaces to a spectral regime that lacks materials for transmissive optics.

8.
Nat Commun ; 14(1): 1114, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36849511

ABSTRACT

Cavities concentrate light and enhance its interaction with matter. Confining to microscopic volumes is necessary for many applications but space constraints in such cavities limit the design freedom. Here we demonstrate stable optical microcavities by counteracting the phase evolution of the cavity modes using an amorphous Silicon metasurface as cavity end mirror. Careful design allows us to limit the metasurface scattering losses at telecom wavelengths to less than 2% and using a distributed Bragg reflector as metasurface substrate ensures high reflectivity. Our demonstration experimentally achieves telecom-wavelength microcavities with quality factors of up to 4600, spectral resonance linewidths below 0.4 nm, and mode volumes below [Formula: see text]. The method introduces freedom to stabilize modes with arbitrary transverse intensity profiles and to design cavity-enhanced hologram modes. Our approach introduces the nanoscopic light control capabilities of dielectric metasurfaces to cavity electrodynamics and is industrially scalable using semiconductor manufacturing processes.

9.
Nat Commun ; 12(1): 3787, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34145275

ABSTRACT

Metasurfaces are arrays of subwavelength spaced nanostructures that can manipulate the amplitude, phase, and polarization of light to achieve a variety of optical functions beyond the capabilities of 3D bulk optics. However, they suffer from limited performance and efficiency when multiple functions with large deflection angles are required because the non-local interactions due to optical coupling between nanostructures are not fully considered. Here we introduce a method based on supercell metasurfaces to demonstrate multiple independent optical functions at arbitrary large deflection angles with high efficiency. In one implementation the incident laser is simultaneously diffracted into Gaussian, helical and Bessel beams over a large angular range. We then demonstrate a compact wavelength-tunable external cavity laser with arbitrary beam control capabilities - including beam shaping operations and the generation of freeform holograms. Our approach paves the way to novel methods to engineer the emission of optical sources.

10.
Phys Rev Lett ; 123(17): 176801, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31702261

ABSTRACT

We report measurements of the temporal dynamics of the valence band photoemission from the magnesium (0001) surface across the resonance of the Γ[over ¯] surface state at 134 eV and link them to observations of high-resolution synchrotron photoemission and numerical calculations of the time-dependent Schrödinger equation using an effective single-electron model potential. We observe a decrease in the time delay between photoemission from delocalized valence states and the localized core orbitals on resonance. Our approach to rigorously link excitation energy-resolved conventional steady-state photoemission with attosecond streaking spectroscopy reveals the connection between energy-space properties of bound electronic states and the temporal dynamics of the fundamental electronic excitations underlying the photoelectric effect.

11.
Nature ; 571(7764): 240-244, 2019 07.
Article in English | MEDLINE | ID: mdl-31243366

ABSTRACT

The enigmatic interplay between electronic and magnetic phenomena observed in many early experiments and outlined in Maxwell's equations propelled the development of modern electromagnetism1. Today, the fully controlled evolution of the electric field of ultrashort laser pulses enables the direct and ultrafast tuning of the electronic properties of matter, which is the cornerstone of light-wave electronics2-7. By contrast, owing to the lack of first-order interaction between light and spin, the magnetic properties of matter can only be affected indirectly and on much longer timescales, through a sequence of optical excitations and subsequent rearrangement of the spin structure8-16. Here we introduce the regime of ultrafast coherent magnetism and show how the magnetic properties of a ferromagnetic layer stack can be manipulated directly by the electric-field oscillations of light, reducing the magnetic response time to an external stimulus by two orders of magnitude. To track the unfolding dynamics in real time, we develop an attosecond time-resolved magnetic circular dichroism detection scheme, revealing optically induced spin and orbital momentum transfer in synchrony with light-field-driven coherent charge relocation17. In tandem with ab initio quantum dynamical modelling, we show how this mechanism enables the simultaneous control of electronic and magnetic properties that are essential for spintronic functionality. Our study unveils light-field coherent control of spin dynamics and macroscopic magnetic moments in the initial non-dissipative temporal regime and establishes optical frequencies as the speed limit of future coherent spintronic applications, spin transistors and data storage media.

12.
Opt Lett ; 41(16): 3714-7, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27519070

ABSTRACT

Attosecond photoelectron streaking spectroscopy allows time-resolved electron dynamics with a temporal resolution approaching the atomic unit of time. Studies have been performed in numerous systems, including atoms, molecules, and surfaces, and the quest for ever higher temporal resolution called for ever wider spectral extent of the attosecond pulses. For typical experiments relying on attosecond pulses with a duration of 200 as, the time-bandwidth limitation for a Gaussian pulse implies a minimal spectral bandwidth larger than 9 eV translating to a corresponding spread of the detected photoelectron kinetic energies. Here, by utilizing a specially tailored narrowband reflective XUV multilayer mirror, we explore experimentally the minimal spectral width compatible with attosecond time-resolved photoelectron spectroscopy while obtaining the highest possible spectral resolution. The validity of the concept is proven by recording attosecond electron streaking traces from the direct semiconductor gallium arsenide (GaAs), with a nominal bandgap of 1.42 eV at room temperature, proving the potential of the approach for tracking charge dynamics also in these technologically highly relevant materials that previously have been inaccessible to attosecond science.

13.
Opt Lett ; 40(12): 2846-9, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26076277

ABSTRACT

Recent advances in the development of attosecond soft x-ray sources toward photon wavelengths below 10 nm are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. We demonstrate that current attosecond experiments in the sub-200-eV range benefit from these improved optics. We present our achievements in utilizing ion-beam-deposited chromium/scandium (Cr/Sc) multilayer mirrors, optimized by tailored material dependent deposition and interface polishing, for the generation of single attosecond pulses from a high-harmonic cut-off spectrum at a central energy of 145 eV. Isolated attosecond pulses have been measured by soft x-ray-pump/NIR-probe electron streaking experiments and characterized using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG/CRAB). The results demonstrate that Cr/Sc multilayer mirrors can be used as efficient attosecond optics for reflecting 600-attosecond pulses at a photon energy of 145 eV, which is a prerequisite for present and future attosecond experiments in this energy range.

14.
Opt Lett ; 37(23): 4973-5, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202108

ABSTRACT

We produce 1.5 cycle (10.5 fs), 1.2 mJ, 3 kHz carrier-envelope-phase-stable pulses at 2.1 µm carrier wavelength, from a three-stage optical parametric chirped-pulse amplifier system, pumped by an optically synchronized 1.6 ps Yb:YAG thin disk laser. A chirped periodically poled lithium niobate crystal is used to generate the ultrabroad spectrum needed for a 1.5 cycle pulse through difference frequency mixing of spectrally broadened pulse from a Ti:sapphire amplifier. It will be an ideal tool for producing isolated attosecond pulses with high photon energies.

15.
Opt Express ; 20(5): 5557-65, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418362

ABSTRACT

The development of new high power laser sources tends toward optical parametric chirped pulse amplification (OPCPA) in recent years. One of the difficulties in OPCPA is the the temporal overlap between pump and seed pulses. In this work we characterize our timing jitter on a single-shot basis using spectrally resolved cross-correlation in combination with a position sensitive detector. A commercial beam stabilization is adapted to actively enhance temporal overlap. This delay-stabilizer reduces the RMS jitter from σ = 127 fs down to σ = 24 fs. The enhanced temporal overlap is demonstrated in our frontend and we propose the scheme to be applicable in many optically synchronized high-repetition-rate OPCPA systems.


Subject(s)
Amplifiers, Electronic , Lasers , Optical Devices , Equipment Design , Equipment Failure Analysis , Feedback
SELECTION OF CITATIONS
SEARCH DETAIL
...