Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters











Publication year range
1.
Viruses ; 16(9)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39339954

ABSTRACT

Viruses in the subfamily Serpentovirinae (order Nidovirales, family Tobaniviridae) can cause significant morbidity and mortality in captive snakes, but documented infections have been limited to snakes of the Boidae, Colubridae, Homalopsidae, and Pythonidae families. Infections can either be subclinical or associated with oral and/or respiratory disease. Beginning in June 2019, a population of over 150 confiscated snakes was screened for serpentovirus as part of a quarantine disease investigation. Antemortem oropharyngeal swabs or lung tissue collected postmortem were screened for serpentovirus by PCR, and 92/165 (56.0%) of snakes tested were positive for serpentovirus. Serpentoviruses were detected in fourteen species of Viperidae native to Asia, Africa, and South America and a single species of Elapidae native to Australia. When present, clinical signs included thin body condition, abnormal behavior or breathing, stomatitis, and/or mortality. Postmortem findings included variably severe inflammation, necrosis, and/or epithelial proliferation throughout the respiratory and upper gastrointestinal tracts. Genetic characterization of the detected serpentoviruses identified four unique viral clades phylogenetically distinct from recognized serpentovirus genera. Pairwise uncorrected distance analysis supported the phylogenetic analysis and indicated that the viper serpentoviruses likely represent the first members of a novel genus in the subfamily Serpentovirinae. The reported findings represent the first documentation of serpentoviruses in venomous snakes (Viperidae and Elapidae), greatly expanding the susceptible host range for these viruses and highlighting the importance of serpentovirus screening in all captive snake populations.


Subject(s)
Phylogeny , Snakes , Animals , Snakes/virology , Viperidae/virology , Nidovirales/genetics , Nidovirales/classification , Nidovirales/isolation & purification , Nidovirales Infections/veterinary , Nidovirales Infections/virology , Genome, Viral
2.
Viruses ; 16(9)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39339972

ABSTRACT

A breeding colony of wild-origin eastern indigo snakes (EISs, Drymarchon couperi) that is part of a reintroduction program has been impacted by gastric cryptosporidiosis. Gastric cryptosporidiosis is an insidious disease of squamates caused by an apicomplexan protozoan, Cryptosporidium serpentis. Viral coinfections have been implicated as possible immunosuppressant agents that allow for disease progression and both adenovirus and reovirus have been implicated in allowing for the progression of gastric cryptosporidiosis during coinfection in other snake species. Molecular (PCR) screening for adenoviruses and reoviruses was performed for both C. serpentis-positive and C. serpentis-negative EIS within the breeding colony. No reoviruses were detected in the collection. Adenoviruses were present in 11/68 (16.2%) EISs evaluated, and there was no significant difference between C. serpentis-positive and C. serpentis-negative EISs (p = 0.196). There was no significant difference in adenovirus status between C. serpentis-positive EISs' lifespan (p = 0.191) or survival rates (p = 0.823). These findings suggest that the presence of the adenoviruses found in this study does not contribute to the formation or progression of gastric cryptosporidiosis in EISs.


Subject(s)
Adenoviridae , Cryptosporidiosis , Cryptosporidium , Animals , Cryptosporidium/isolation & purification , Coinfection/virology , Coinfection/parasitology , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Snakes/virology , Snakes/parasitology , Colubridae/parasitology , Colubridae/virology , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Stomach Diseases/veterinary , Stomach Diseases/parasitology , Stomach Diseases/virology
3.
Science ; 385(6715): 1347-1354, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39298575

ABSTRACT

Long noncoding RNAs (lncRNAs) are essential regulatory elements of sex chromosomes that act to equalize gene expression levels between males and females. XIST, RSX, and roX2 regulate X chromosomes in placental mammals, marsupials, and Drosophila, respectively. Because the green anole (Anolis carolinensis) shows complete dosage compensation of its X chromosome, we tested whether a lncRNA was involved. We found an ancient lncRNA, MAYEX, that gained male-specific expression more than 89 million years ago. MAYEX evolved a notable association with the acetylated histone 4 lysine 16 (H4K16ac) epigenetic mark and the ability to loop its locus to the totality of the X chromosome to increase expression levels. MAYEX is the first lncRNA in reptiles linked to a dosage compensation mechanism that balances the expression of sex chromosomes.


Subject(s)
Dosage Compensation, Genetic , Lizards , RNA, Long Noncoding , X Chromosome , Animals , Female , Male , Acetylation , Epigenesis, Genetic , Evolution, Molecular , Histones/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome/genetics , Lizards/genetics
4.
Am J Vet Res ; 85(10)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39116915

ABSTRACT

OBJECTIVE: The purpose of this study was to compare various sampling techniques and commercially available diagnostic tests for Cryptosporidium serpentis. METHODS: A colony of 80 eastern indigo snakes (Drymarchon couperi) in human care was screened for the presence of C serpentis using endoscopic gastric mucosal biopsies for histologic and molecular analyses. At the time of endoscopic examination and biopsy, a cloacal swab, gastric swab, and gastric lavage sample were also collected. A C serpentis-specific probe hybridization quantitative PCR (qPCR) was performed on each sample. The gastric lavage sample was divided equally for direct microscopy, acid-fast stain, rapid qualitative immunochromatographic assay, direct fluorescent antibody, and 5 different PCR analyses. If a fecal sample was available at the time of endoscopic evaluation, it was also evaluated for Cryptosporidium oocysts by direct microscopy and acid-fast staining. RESULTS: When comparing test results to histologic analyses, the sensitivity of the probe hybridization qPCR of gastric biopsy, gastric lavage, and gastric swab was 100% while the cloacal swab was 72%. When gastric lavage tests were compared, qPCRs outperformed the other tests. CONCLUSIONS: Endoscopic biopsy for histologic and qPCR analyses is recommended for disease diagnosis, while gastric lavage or gastric swab samples for qPCR analysis are as sensitive as endoscopic biopsy for screening for the pathogen but cannot diagnose disease. CLINICAL RELEVANCE: The results from this study allow the veterinary practitioner to select the most appropriate sample and testing methodology when evaluating an ophidian patient for gastric cryptosporidiosis.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Animals , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Cryptosporidiosis/diagnosis , Cryptosporidiosis/parasitology , Colubridae/parasitology , Sensitivity and Specificity , Feces/parasitology , Real-Time Polymerase Chain Reaction/veterinary , Biopsy/veterinary , Cloaca/parasitology
5.
J Zoo Wildl Med ; 55(2): 540-546, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875213

ABSTRACT

This report describes Schizangiella infections in colubrid and viperid snakes. A captive eastern ratsnake (Pantherophis alleghaniensis) was presented for a large intraoral mass associated with the mandible. The mass was debulked and histologic examination revealed severe, granulomatous stomatitis with intralesional fungi exhibiting morphologic features consistent with Schizangiella serpentis. PCR and sequencing of affected tissues confirmed S. serpentis. Because of declining health, the ratsnake was euthanized and postmortem examination identified a disseminated S. serpentis infection involving the skeletal musculature, lung, kidney, mesentery, and mandible. A wild-caught timber rattlesnake (Crotalus horridus) was presented for cutaneous lesions, weakness, and lethargy and later died. Postmortem examination revealed a mass-like structure in the esophagus characterized by high numbers of Schizangiella-like fungi associated with extensive granulomatous inflammation; the snake also had cutaneous mycosis suggestive of ophidiomycosis. This is the first report to document the unique morphologic features of S. serpentis in tissues and the presentation of schizangiellosis in snakes. Schizangiellosis should be considered as a differential diagnosis for nodular lesions involving the oral cavity and/or the gastrointestinal tract of snakes.


Subject(s)
Crotalus , Animals , Colubridae , Mycoses/veterinary , Mycoses/microbiology , Mycoses/pathology , Mycoses/diagnosis , Thelazioidea/isolation & purification , Animals, Zoo , Male , Female , Venomous Snakes
6.
J Zoo Wildl Med ; 55(2): 479-489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875206

ABSTRACT

Aspergillosis is a major cause of morbidity and mortality in penguins, with triazole antifungal drugs being commonly used for prophylaxis and treatment. This report describes 15 cases of fatal hemolysis associated with liquid itraconazole and voriconazole formulations administered to African penguins (Spheniscus demersus) from four institutions. All penguins underwent stressful events (e.g. relocation, induced molt) and were administered commercial liquid itraconazole formulations or compounded voriconazole liquid suspension. Observed clinical signs in affected penguins prior to death included hyporexia, weight loss, lethargy, dyspnea, red-tinged droppings, and obtunded mentation. Intra- and extravascular hemolysis and hemoglobinuric nephrosis were the primary pathologic manifestations on postmortem examination. The concentration-dependent hemolytic potentials of itraconazole, voriconazole, and commercial and compounded vehicle suspensions were evaluated in vitro by exposing chicken whole blood as a surrogate for penguin blood. Hemoglobin content in blood plasma was then measured by spectrophotometry. Neither itraconazole nor voriconazole alone induced hemolysis in vitro. The vehicle ingredients sorbitol and hydromellose induced hemolysis, but not at predicted plasma levels in chicken erythrocytes, suggesting neither the azole antifungals nor their major vehicles alone were likely to contribute to hemolysis in vivo in these penguins. Potential mechanisms of toxicosis include generation of an unmeasured reactive metabolite causing hemolysis, preexisting erythrocyte fragility, or species-specific differences in hemolytic thresholds that were not assessed in the chicken erythrocyte model. More research is needed on the potential for toxicosis of azole antifungal drugs and carrier molecules in this and other avian species.


Subject(s)
Antifungal Agents , Bird Diseases , Hemolysis , Spheniscidae , Voriconazole , Animals , Bird Diseases/chemically induced , Bird Diseases/drug therapy , Hemolysis/drug effects , Antifungal Agents/adverse effects , Antifungal Agents/therapeutic use , Antifungal Agents/administration & dosage , Voriconazole/adverse effects , Voriconazole/therapeutic use , Itraconazole/adverse effects , Itraconazole/therapeutic use , Itraconazole/administration & dosage , Triazoles/adverse effects , Triazoles/therapeutic use , Male , Female , Animals, Zoo
7.
Front Vet Sci ; 11: 1353975, 2024.
Article in English | MEDLINE | ID: mdl-38799723

ABSTRACT

Species of Pterygodermatites are spirurid nematodes that have expanded their geographic distribution worldwide. They infect a variety of mammalian definitive hosts with few reports of potential paratenic infections in amphibian and reptile hosts. In this study, we report Pterygodermatites sp. larvae identified in free-ranging, invasive Cuban treefrogs (Osteopilus septentrionalis), from central Florida, United States. Encysted larvae were recovered from the skeletal muscle and/or the coelomic cavity of three frogs; molecular characterization of the small subunit (18S) ribosomal RNA and cytochrome oxidase I genes of the parasites matched reported sequences of Pterygodermatites (Mesopectines) whartoni (Tubangui, 1931). This is a parasite native to Southeastern Asia and to the best of the authors' knowledge, it is the first report of the species in the New World. The recovery of invasive Pterygodermatites from invasive Cuban treefrogs in North America highlights the growing concern regarding the potential impact non-native parasites and invasive species may have on native wildlife populations.

8.
J Am Vet Med Assoc ; 262(9): 1-11, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38788762

ABSTRACT

OBJECTIVE: To determine epidemiologic features of naturally occurring myxomatosis in domestic rabbits in California and to characterize clinicopathologic and diagnostic findings. ANIMALS: 11 client-owned rabbits, Oryctolagus cuniculus subsp domesticus. CLINICAL PRESENTATION: A prospective study of pet rabbits with myxomatosis seen at an exotic animal specialty clinic in Santa Cruz county, California, was conducted between January 1, 2022, and December 31, 2023. Rabbits were included in the study if they had bilateral blepharedema and were PCR positive for myxoma virus. RESULTS: All infected rabbits had spent time outdoors. Common clinical signs included bilateral blepharedema (11/11), anogenital edema (10/11), rectal temperature ≥ 39.7 °C (5/9), and sudden death (4/11). Eyelid biopsies from all rabbits (11/11) were positive for myxoma virus by qualitative PCR followed by Sanger sequencing (100% nucleotide identity to strain MSW, also known as California/San Francisco 1950 [Genbank accession KF148065]). Most rabbits had keratinocytes containing eosinophilic intracytoplasmic viral inclusions in biopsies of edematous skin (8/11) and lymphocyte necrosis in the spleen (10/11). Immunohistochemistry identified myxoma virus in samples of skin, heart, lung, ileum, spleen, and lymph node. CLINICAL RELEVANCE: Clinical signs of myxomatosis caused by the MSW strain of myxoma virus are distinctive but subtle. Cases occur regularly in the Santa Cruz and San Jose regions of California. As infection with this virus is almost 100% fatal and no vaccine is available in the US, owners of domestic rabbits in endemic areas should keep their pets indoors or behind mosquito screens. Myxomatosis is a reportable disease in the US, and the appropriate state or federal agencies should be contacted when outbreaks occur.


Subject(s)
Myxoma virus , Myxomatosis, Infectious , Animals , Rabbits , California/epidemiology , Female , Male , Myxomatosis, Infectious/epidemiology , Myxomatosis, Infectious/pathology , Pets , Prospective Studies
9.
Commun Biol ; 7(1): 476, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637646

ABSTRACT

Since late 2021, highly pathogenic avian influenza (HPAI) viruses of A/goose/Guangdong/1/1996 (H5N1) lineage have caused widespread mortality in wild birds and poultry in the United States. Concomitant with the spread of HPAI viruses in birds are increasing numbers of mammalian infections, including wild and captive mesocarnivores and carnivores with central nervous system involvement. Here we report HPAI, A(H5N1) of clade 2.3.4.4b, in a common bottlenose dolphin (Tursiops truncatus) from Florida, United States. Pathological findings include neuronal necrosis and inflammation of the brain and meninges, and quantitative real time RT-PCR reveal the brain carried the highest viral load. Virus isolated from the brain contains a S246N neuraminidase substitution which leads to reduced inhibition by neuraminidase inhibitor oseltamivir. The increased prevalence of A(H5N1) viruses in atypical avian hosts and its cross-species transmission into mammalian species highlights the public health importance of continued disease surveillance and biosecurity protocols.


Subject(s)
Bottle-Nosed Dolphin , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Florida/epidemiology , Neuraminidase , Influenza A virus/physiology , Birds
10.
Viruses ; 16(2)2024 02 18.
Article in English | MEDLINE | ID: mdl-38400085

ABSTRACT

Serpentoviruses are a subfamily of positive sense RNA viruses in the order Nidovirales, family Tobaniviridae, associated with respiratory disease in multiple clades of reptiles. While the broadest viral diversity is reported from captive pythons, other reptiles, including colubrid snakes, turtles, and lizards of captive and free-ranging origin are also known hosts. To better define serpentoviral diversity, eleven novel serpentovirus genomes were sequenced with an Illumina MiSeq and, when necessary, completed with other Sanger sequencing methods. The novel serpentoviral genomes, along with 57 other previously published serpentovirus genomes, were analyzed alongside four outgroup genomes. Genomic analyses included identifying unique genome templates for each serpentovirus clade, as well as analysis of coded protein composition, potential protein function, protein glycosylation sites, differences in phylogenetic history between open-reading frames, and recombination. Serpentoviral genomes contained diverse protein compositions. In addition to the fundamental structural spike, matrix, and nucleoprotein proteins required for virion formation, serpentovirus genomes also included 20 previously uncharacterized proteins. The uncharacterized proteins were homologous to a number of previously characterized proteins, including enzymes, transcription factors, scaffolding, viral resistance, and apoptosis-related proteins. Evidence for recombination was detected in multiple instances in genomes from both captive and free-ranging snakes. These results show serpentovirus as a diverse clade of viruses with genomes that code for a wide diversity of proteins potentially enhanced by recombination events.


Subject(s)
Genome , Nidovirales , Phylogeny , Base Sequence , Nidovirales/genetics , Recombination, Genetic , Genome, Viral
11.
Vet Pathol ; 61(1): 109-118, 2024 01.
Article in English | MEDLINE | ID: mdl-37458163

ABSTRACT

Strongyloides are small rhabditid nematodes primarily associated with enteric disease in a variety of animal species, including reptiles. Strongyloides spp life stages were associated with a disease outbreak in a large breeding colony of snakes. Multiple Pantherophis and Lampropeltis colubrids exhibited respiratory distress, anorexia, stomatitis, facial deformation, and waning body condition that resulted in death or necessitated euthanasia. Postmortem examinations of 13 snakes revealed epithelial hyperplasia and inflammation of the alimentary and respiratory tracts associated with varying numbers of adult and larval nematodes and embryonated or larvated ova. In a subset of snakes, aberrant nematode migration was also observed in the eye, genitourinary system, coelom, and vasculature. Histomorphology and gross examination of parasitic adult female nematodes from host tissues were consistent with a Strongyloides spp. Sedimented fecal material from 101/160 (63%) snakes housed in the affected facility was positive for nematodes and/or larvated ova. Polymerase chain reaction amplification and sequencing of portions of the 18S and 28S ribosomal ribonucleic acid (RNA) genes and the internal transcribed spacer region of adult female parasites and positive fecal samples supported the diagnosis of strongyloidiasis. Strongyloides spp possess a unique life cycle capable of alternating between parasitic (homogonic) and free-living (heterogonic) stages, resulting in the production of directly infective larvae. Commonly utilized husbandry practices in reptile collections can amplify the numbers of infective larvae generated in the captive environment, increasing the risk for rhabditid hyperinfections. This report documents morbidity, mortality, and non-enteric disease manifestations due to Strongyloides hyperinfections in a captive colubrid snake colony.


Subject(s)
Colubridae , Strongyloidiasis , Female , Animals , Strongyloidiasis/epidemiology , Strongyloidiasis/veterinary , Strongyloidiasis/diagnosis , Colubridae/genetics , Strongyloides/anatomy & histology , Strongyloides/genetics , Snakes , Polymerase Chain Reaction/veterinary
12.
Emerg Infect Dis ; 29(10): 1-7, 2023 10.
Article in English | MEDLINE | ID: mdl-37735750

ABSTRACT

The world's reptiles and amphibians are experiencing dramatic and ongoing losses in biodiversity, changes that can have substantial effects on ecosystems and human health. In 2022, the first Global Amphibian and Reptile Disease Conference was held, using One Health as a guiding principle. The conference showcased knowledge on numerous reptile and amphibian pathogens from several standpoints, including epidemiology, host immune defenses, wild population effects, and mitigation. The conference also provided field experts the opportunity to discuss and identify the most urgent herpetofaunal disease research directions necessary to address current and future threats to reptile and amphibian biodiversity.


Subject(s)
Ecosystem , One Health , Humans , Animals , Amphibians , Reptiles , Biodiversity
13.
J Vet Diagn Invest ; 35(5): 554-558, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37408504

ABSTRACT

Herpesviruses can be significant reptile pathogens. Herpesviral infection in a wild-caught, male spider tortoise (Pyxis arachnoides) under human care was detected during a routine wellness examination prior to transition between zoologic organizations. The tortoise had no clinical signs of illness. Oral swabs obtained during a physical examination as part of pre-shipment risk mitigation for infectious disease were submitted for consensus herpesvirus PCR assay and sequencing. Based on comparative sequence analysis, the novel herpesvirus identified is a member of the subfamily Alphaherpesvirinae. Studies of herpesviral phylogeny in chelonian species support branching patterns of turtle herpesviruses that closely mirror those of their hosts. The symmetry of these patterns is suggestive of close codivergence of turtle herpesviruses with their host species. The distribution of these viruses in both tortoises and emydids suggests a phylogenetic duplication event in the herpesviruses after host divergence of the Pleurodira and basal to the divergence of Americhelydia. Herpesviral infections have been documented to cause higher morbidity when introduced to aberrant host species, and significant consideration must be given to the presence of herpesviruses in the management of tortoise collections, particularly collections that include various species of testudines.


Subject(s)
Alphaherpesvirinae , Herpesviridae Infections , Herpesviridae , Turtles , Humans , Male , Animals , Phylogeny , Madagascar , Herpesviridae/genetics , Herpesviridae Infections/veterinary
14.
Microorganisms ; 11(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37374873

ABSTRACT

Ophidian serpentoviruses, positive-sense RNA viruses in the order Nidovirales, are important infectious agents of both captive and free-ranging reptiles. Although the clinical significance of these viruses can be variable, some serpentoviruses are pathogenic and potentially fatal in captive snakes. While serpentoviral diversity and disease potential are well documented, little is known about the fundamental properties of these viruses, including their potential host ranges, kinetics of growth, environmental stability, and susceptibility to common disinfectants and viricides. To address this, three serpentoviruses were isolated in culture from three unique PCR-positive python species: Ball python (Python regius), green tree python (Morelia viridis), and Stimson's python (Antaresia stimsoni). A median tissue culture infectious dose (TCID50) was established to characterize viral stability, growth, and susceptibility. All isolates showed an environmental stability of 10-12 days at room temperature (20 °C). While all three viruses produced variable peak titers on three different cell lines when incubated at 32 °C, none of the viruses detectably replicated at 35 °C. All viruses demonstrated a wide susceptibility to sanitizers, with 10% bleach, 2% chlorhexidine, and 70% ethanol inactivating the virus in one minute and 7% peroxide and a quaternary ammonium solution within three minutes. Of seven tested antiviral agents, remdesivir, ribavirin, and NITD-008, showed potent antiviral activity against the three viruses. Finally, the three isolates successfully infected 32 unique tissue culture cell lines representing different diverse reptile taxa and select mammals and birds as detected by epifluorescent immunostaining. This study represents the first characterization of in vitro properties of growth, stability, host range, and inactivation for a serpentovirus. The reported results provide the basis for procedures to mitigate the spread of serpentoviruses in captive snake colonies as well as identify potential non-pharmacologic and pharmacologic treatment options for ophidian serpentoviral infections.

15.
Front Vet Sci ; 10: 1132161, 2023.
Article in English | MEDLINE | ID: mdl-37077953

ABSTRACT

A complete postmortem examination, including a computed tomography scan "virtopsy" (virtual necropsy), gross necropsy, cytology, histology, and molecular diagnostics were performed to investigate the cause of death of a deceased adult male Atlantic spotted dolphin (Stenella frontalis) that stranded on Pensacola Beach, Florida, USA in February 2020. Significant findings included chronic inflammation of the meninges, brain, and spinal cord with intralesional protozoa (identified as Sarcocystis speeri via 18S rRNA and ITS-1 sequences), suppurative fungal tracheitis and bronchopneumonia (identified as Aspergillus fumigatus via ITS-2 gene sequence) and ulcerative bacterial glossitis (associated with a novel Treponema species, Candidatus Treponema stenella, identified via 23S rRNA gene sequence). This is the first reported case of S. speeri in a marine mammal. Little is understood about the epidemiology of S. speeri, including the identity of its intermediate hosts. The findings of this case suggest that S. frontalis may be a capable aberrant host and experience morbidity and mortality from this parasite. It is suspected that the novel Treponema and Aspergillus fumigatus infections were opportunistic or secondary to immunosuppression, either due to S. speeri infection or other co-morbidities.

16.
Vet Immunol Immunopathol ; 259: 110594, 2023 May.
Article in English | MEDLINE | ID: mdl-37058951

ABSTRACT

GD2 and GD3 are disialoganglioside oncofetal antigens important in oncogenesis. GD2 synthase (GD2S) and GD3 synthase (GD3S) are needed for GD2 and GD3 production. The objectives of this study are to validate the use of RNA in situ hybridization (RNAscope®) in the detection of GD2S and GD3S in canine histiocytic sarcoma (HS) in vitro and optimize this technique in canine formalin-fixed paraffin-embedded (FFPE) tissues. A secondary objective is to evaluate the prognostic significance of GD2S and GD3S on survival. Quantitative RT-PCR compared GD2S and GD3S mRNA expression between three HS cell lines followed by RNAscope® in fixed cell pellets from the DH82 cell line and FFPE tissues. Variables prognostic for survival were determined with Cox proportional hazard model. RNAscope® was validated for detection of GD2S and GD3S and optimized in FFPE tissues. GD2S and GD3S mRNA expression was variable between cell lines. GD2S and GD3S mRNA expression was detected and measured in all tumor tissues; there was no association with prognosis. GD2S and GD3S are expressed in canine HS and successfully detected using the high throughput technique of RNAscope® in FFPE samples. This study provides the foundation for future prospective research of GD2S and GD3S utilizing RNAscope®.


Subject(s)
Dog Diseases , Histiocytic Sarcoma , Animals , Dogs , Prognosis , Gangliosides , Cell Line, Tumor , Histiocytic Sarcoma/veterinary , Sialyltransferases/genetics , Sialyltransferases/metabolism , RNA, Messenger/genetics , Dog Diseases/diagnosis
17.
J Wildl Dis ; 59(2): 322-331, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36996061

ABSTRACT

Emergent fungal pathogens in herpetofauna are a concern in both wild and captive populations. We diagnosed dermatomycosis by Paranannizziopsis australasiensis in two panther chameleons (Furcifer pardalis) and suspected it in eight others captured from an established free-living nonnative population in Florida, USA. Chameleons developed skin lesions following recent exposure to cold weather conditions while housed in captivity, approximately 10 mo after capture and 12 wk after being placed in outdoor enclosures. Affected animals were treated with oral voriconazole and terbinafine until most cases resolved; however, medications were ultimately discontinued. Paranannizziopsis australasiensis has not previously been described in chameleons, nor in animals originating from a free-ranging population in the USA. Although the source of P. australasiensis infection is uncertain, we discuss several scenarios related to the pet trade and unique situation of chameleon "ranching" present in the USA.


Subject(s)
Dermatomycoses , Lizards , Onygenales , Animals , Florida/epidemiology , Dermatomycoses/epidemiology , Dermatomycoses/veterinary , Dermatomycoses/microbiology
18.
J Wildl Dis ; 59(2): 337-341, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36989509

ABSTRACT

Beginning in July 2019, numerous free-ranging brown anoles (Anolis sagrei), an invasive lizard species in Florida, USA, were reported with large, soft, subcutaneous masses and disfiguring facial swellings. Postmortem evaluations of six affected animals, including cytology, histology, and electron microscopy, identified the presence of myriad chain-forming coccoid bacteria surrounded by a prominent clear capsule and abundant lightly basophilic matrix material with minimal associated granulomatous inflammation and effacement of normal tissue. Standard PCR and sequencing of the lesions revealed 100% nucleotide identity to Enterococcus lacertideformus. This bacterium was first observed in 2014 as the cause of a severe, multisystemic infection in several species of lizards (geckos and skinks) on Christmas Island, an Australian external territory in the Indian Ocean. Previously, analysis of E. lacertideformus had been hindered by an inability to grow the bacterium in standard culture conditions. We successfully cultured the organism on primary anole kidney cells. Given the growing recognition of host species diversity and geographic distribution noted for this organism, there is potential concern for spread to native North American lizards, especially the green anole (Anolis carolinensis), whose population numbers have apparently decreased due to introduced brown anoles.


Subject(s)
Lizards , Animals , Florida/epidemiology , Australia , Introduced Species
19.
Vet Immunol Immunopathol ; 257: 110560, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36804838

ABSTRACT

Histiocytic sarcoma (HS) is an aggressive malignant neoplasm in dogs. Expression and prognostic significance of transforming growth factor beta (TGF-ß), programmed death-ligand 1 (PD-L1), and T regulatory cells (Tregs) in HS is unknown. The goal of this study was to investigate the expression and prognostic significance of TGF-ß, PD-L1, and FoxP3/CD25 in canine HS utilizing RNA in situ hybridization (RNAscope®). After validation was performed, RNAscope® on formalin-fixed paraffin-embedded (FFPE) patient HS tissue samples was performed for all targets and expression quantified with HALO® software image analysis. Cox proportional hazard model was conducted to investigate the association between survival time and each variable. Additionally, for categorical data, the Kaplan-Meier product-limit method was used to generate survival curves. TGF-ß and PD-L1 mRNA expression was confirmed in the DH82 cell line by reverse transcription polymerase chain reaction (RT-PCR) and CD25 + FoxP3 + cells were detected by flow cytometry in peripheral blood. Once the RNAscope® method was validated, TGF-ß H-score and dots/cell and FoxP3 dots/cell were assessed in HS samples and found to be significantly correlated with survival. Moderate positive correlations were found between FoxP3 and PD-L1 H-score, percent staining area, and dots/cell, and FoxP3 and TGF-ß dots/cell. In summary, RNAscope® is a valid technique to detect TGF-ß and PD-L1 expression and identify Tregs in canine HS FFPE tissues. Furthermore, canine HS expresses TGF-ß and PD-L1. Increased TGF-ß and FoxP3 correlated with worse prognosis. Prospective studies are warranted to further investigate TGF-ß, PD-L1, and Tregs effect on prognosis.


Subject(s)
Dog Diseases , Histiocytic Sarcoma , Animals , Dogs , Prognosis , B7-H1 Antigen , Transforming Growth Factor beta , Histiocytic Sarcoma/veterinary , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism , Dog Diseases/metabolism
20.
R Soc Open Sci ; 10(2): 220810, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36756057

ABSTRACT

Dynamic interactions between host, pathogen and host-associated microbiome dictate infection outcomes. Pathogens including Batrachochytrium dendrobatidis (Bd) threaten global biodiversity, but conservation efforts are hindered by limited understanding of amphibian host, Bd and microbiome interactions. We conducted a vaccination and infection experiment using Eastern hellbender salamanders (Cryptobranchus alleganiensis alleganiensis) challenged with Bd to observe infection, skin microbial communities and gene expression of host skin, pathogen and microbiome throughout the experiment. Most animals survived high Bd loads regardless of their vaccination status and vaccination did not affect pathogen load, but host gene expression differed based on vaccination. Oral vaccination (exposure to killed Bd) stimulated immune gene upregulation while topically and sham-vaccinated animals did not significantly upregulate immune genes. In early infection, topically vaccinated animals upregulated immune genes but orally and sham-vaccinated animals downregulated immune genes. Bd increased pathogenicity-associated gene expression in late infection when Bd loads were highest. The microbiome was altered by Bd, but there was no correlation between anti-Bd microbe abundance or richness and pathogen burden. Our observations suggest that hellbenders initially generate a vigorous immune response to Bd, which is ineffective at controlling disease and is subsequently modulated. Interactions with antifungal skin microbiota did not influence disease progression.

SELECTION OF CITATIONS
SEARCH DETAIL