Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(3): e0119030, 2015.
Article in English | MEDLINE | ID: mdl-25775093

ABSTRACT

BACKGROUND: Neurofibromatosis type I (NF1, MIM#162200) is a relatively frequent genetic condition, which predisposes to tumor formation. Apart from tumors, individuals with NF1 often exhibit endocrine abnormalities such as precocious puberty (2,5-5% of NF1 patients) and some cases of hypertension (16% of NF1 patients). Several cases of adrenal cortex adenomas have been described in NF1 individuals supporting the notion that neurofibromin might play a role in adrenal cortex homeostasis. However, no experimental data were available to prove this hypothesis. MATERIALS AND METHODS: We analysed Nf1Prx1 mice and one case of adrenal cortical hyperplasia in a NF1patient. RESULTS: In Nf1Prx1 mice Nf1 is inactivated in the developing limbs, head mesenchyme as well as in the adrenal gland cortex, but not the adrenal medulla or brain. We show that adrenal gland size is increased in NF1Prx1 mice. Nf1Prx1 female mice showed corticosterone and aldosterone overproduction. Molecular analysis of Nf1 deficient adrenals revealed deregulation of multiple proteins, including steroidogenic acute regulatory protein (StAR), a vital mitochondrial factor promoting transfer of cholesterol into steroid making mitochondria. This was associated with a marked upregulation of MAPK pathway and a female specific increase of cAMP concentration in murine adrenal lysates. Complementarily, we characterized a patient with neurofibromatosis type I with macronodular adrenal hyperplasia with ACTH-independent cortisol overproduction. Comparison of normal control tissue- and adrenal hyperplasia- derived genomic DNA revealed loss of heterozygosity (LOH) of the wild type NF1 allele, showing that biallelic NF1 gene inactivation occurred in the hyperplastic adrenal gland. CONCLUSIONS: Our data suggest that biallelic loss of Nf1 induces autonomous adrenal hyper-activity. We conclude that Nf1 is involved in the regulation of adrenal cortex function in mice and humans.


Subject(s)
Adrenal Cortex/pathology , Adrenal Hyperplasia, Congenital/genetics , Homeodomain Proteins/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Adolescent , Adrenal Cortex/metabolism , Adrenal Hyperplasia, Congenital/metabolism , Adrenal Hyperplasia, Congenital/pathology , Adrenocorticotropic Hormone/metabolism , Animals , Child , Child, Preschool , Female , Humans , Loss of Heterozygosity , Mice , Neurofibromatosis 1/metabolism , Neurofibromin 1/metabolism
2.
Eur J Hum Genet ; 23(6): 870-3, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25293717

ABSTRACT

Neurofibromatosis type 1 (NF1) (MIM#162200) is a relatively frequent genetic condition that predisposes to tumor formation. The main types of tumors occurring in NF1 patients are cutaneous and subcutaneous neurofibromas, plexiform neurofibromas, optic pathway gliomas, and malignant peripheral nerve sheath tumors. To search for somatic mutations in cutaneous (dermal) neurofibromas, whole-exome sequencing (WES) was performed on seven spatially separated tumors and two reference tissues (blood and unaffected skin) from a single NF1 patient. Validation of WES findings was done using routine Sanger sequencing or Sequenom IPlex SNP genotyping. Exome sequencing confirmed the existence of a known familial splice-site mutation NM_000267.3:c.3113+1G>A in exon 23 of NF1 gene (HGMD ID CS951480) in blood, unaffected skin, and all tumor samples. In five out of seven analyzed tumors, we additionally detected second-hit mutations in the NF1 gene. Four of them were novel and one was previously observed. Each mutation was distinct, demonstrating the independent origin of each tumor. Only in two of seven tumors we detected an additional somatic mutation that was not associated with NF1. Our study demonstrated that somatic mutations of NF1 are likely the main drivers of cutaneous tumor formation. The study provides evidence for the rareness of single base pair level alterations in the exomes of benign NF1 cutaneous tumors.


Subject(s)
Mutation , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Skin Neoplasms/genetics , Clonal Evolution , Exome , Female , Humans , Middle Aged , Polymorphism, Single Nucleotide
3.
PLoS One ; 9(1): e86115, 2014.
Article in English | MEDLINE | ID: mdl-24465906

ABSTRACT

Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions.


Subject(s)
Bone Matrix/pathology , Bone Matrix/physiopathology , Bone and Bones/pathology , Bone and Bones/physiopathology , Calcification, Physiologic , Neurofibromatosis 1/pathology , Neurofibromatosis 1/physiopathology , Animals , Biomechanical Phenomena , Blood Vessels/pathology , Bone Density , Bone and Bones/blood supply , Collagen/metabolism , Diaphyses/blood supply , Diaphyses/metabolism , Diaphyses/pathology , Homeodomain Proteins/metabolism , Mice , Mice, Knockout , Neurofibromin 1/deficiency , Neurofibromin 1/metabolism , Osteocytes/metabolism , Osteocytes/pathology , Porosity , Tibia/pathology , Tibia/physiopathology
4.
Hum Mol Genet ; 20(14): 2697-709, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21478499

ABSTRACT

Neurofibromatosis type 1 (NF1) is a multi-system disease caused by mutations in the NF1 gene encoding a Ras-GAP protein, neurofibromin, which negatively regulates Ras signaling. Besides neuroectodermal malformations and tumors, the skeletal system is often affected (e.g. scoliosis and long bone dysplasia) demonstrating the importance of neurofibromin for development and maintenance of the musculoskeletal system. Here, we focus on the role of neurofibromin in skeletal muscle development. Nf1 gene inactivation in the early limb bud mesenchyme using Prx1-cre (Nf1(Prx1)) resulted in muscle dystrophy characterized by fibrosis, reduced number of muscle fibers and reduced muscle force. This was caused by an early defect in myogenesis affecting the terminal differentiation of myoblasts between E12.5 and E14.5. In parallel, the muscle connective tissue cells exhibited increased proliferation at E14.5 and an increase in the amount of connective tissue as early as E16.5. These changes were accompanied by excessive mitogen-activated protein kinase pathway activation. Satellite cells isolated from Nf1(Prx1) mice showed normal self-renewal, but their differentiation was impaired as indicated by diminished myotube formation. Our results demonstrate a requirement of neurofibromin for muscle formation and maintenance. This previously unrecognized function of neurofibromin may contribute to the musculoskeletal problems in NF1 patients.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation , Muscle Development/physiology , Muscle, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Neurofibromin 1/metabolism , Animals , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/metabolism , Bone Diseases, Developmental/pathology , Humans , Mice , Mice, Transgenic , Muscle, Skeletal/pathology , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Mutation , Myoblasts, Skeletal/pathology , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/pathology , Neurofibromin 1/genetics , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Scoliosis/genetics , Scoliosis/metabolism , Scoliosis/pathology
5.
BMC Med ; 6: 21, 2008 Jul 31.
Article in English | MEDLINE | ID: mdl-18671844

ABSTRACT

BACKGROUND: Bowing and/or pseudarthrosis of the tibia is a known severe complication of neurofibromatosis type 1 (NF1). Mice with conditionally inactivated neurofibromin (Nf1) in the developing limbs and cranium (Nf1Prx1) show bowing of the tibia caused by decreased bone mineralisation and increased bone vascularisation. However, in contrast to NF1 patients, spontaneous fractures do not occur in Nf1Prx1 mice probably due to the relatively low mechanical load. We studied bone healing in a cortical bone injury model in Nf1Prx1 mice as a model for NF1-associated bone disease. Taking advantage of this experimental model we explore effects of systemically applied lovastatin, a cholesterol-lowering drug, on the Nf1 deficient bone repair. METHODS: Cortical injury was induced bilaterally in the tuberositas tibiae in Nf1Prx1 mutant mice and littermate controls according to a method described previously. Paraffin as well as methacrylate sections were analysed from each animal. We divided 24 sex-matched mutant mice into a lovastatin-treated and an untreated group. The lovastatin-treated mice received 0.15 mg activated lovastatin by daily gavage. The bone repair process was analysed at three consecutive time points post injury, using histological methods, micro computed tomography measurements and in situ hybridisation. At each experimental time point, three lovastatin-treated mutant mice, three untreated mutant mice and three untreated control mice were analysed. The animal group humanely killed on day 14 post injury was expanded to six treated and six untreated mutant mice as well as six control mice. RESULTS: Bone injury repair is a complex process, which requires the concerted effort of numerous cell types. It is initiated by an inflammatory response, which stimulates fibroblasts from the surrounding connective tissue to proliferate and fill in the injury site with a provisional extracellular matrix. In parallel, mesenchymal progenitor cells from the periost are recruited into the injury site to become osteoblasts. In Nf1Prx1 mice bone repair is delayed and characterised by the excessive formation and the persistence of fibro-cartilaginous tissue and impaired extracellular matrix mineralisation. Correspondingly, expression of Runx2 is downregulated. High-dose systemic lovastatin treatment restores Runx2 expression and accelerates new bone formation, thus improving cortical bone repair in Nf1Prx1 tibia. The bone anabolic effects correlate with a reduction of the mitogen activated protein kinase pathway hyper-activation in Nf1-deficient cells. CONCLUSION: Our data suggest the potential usefulness of lovastatin, a drug approved by the US Food and Drug Administration in 1987 for the treatment of hypercholesteraemia, in the treatment of Nf1-related fracture healing abnormalities. The experimental model presented here constitutes a valuable tool for the pre-clinical stage testing of candidate drugs, targeting Nf1-associated bone dysplasia.


Subject(s)
Lovastatin/therapeutic use , Neurofibromatosis 1/complications , Osteochondrodysplasias/drug therapy , Tibia/pathology , Animals , Base Sequence , DNA Primers , Female , In Situ Hybridization , Male , Mice , Mice, Inbred C57BL , Neurofibromatosis 1/physiopathology , Osteochondrodysplasias/complications
6.
RNA ; 8(5): 612-25, 2002 May.
Article in English | MEDLINE | ID: mdl-12022228

ABSTRACT

Radioactively labeled 4.5S RNA containing statistically distributed 4-thiouridine residues in place of normal uridine was prepared by T7 transcription. The ability of this modified 4.5S RNA to form a complex with the protein Ffh was demonstrated by a gel shift assay. The modified 4.5S RNA, with or without Ffh, was added to Escherichia coli ribosomes under various conditions, and crosslinking from the thiouridine residues was induced by irradiation at 350 nm. The crosslinked ribosomal components were analyzed by our standard procedures. Two clearly defined types of crosslinking were observed. The first was a crosslink to 23S rRNA, which was entirely dependent both on the presence of Ffh and a nascent protein chain in the 50S subunit. This crosslink was localized to nt approximately 2828-2837 of the 23S rRNA, from position 84 of the 4.5S molecule. The second type of crosslinking, to the 30S ribosomal subunit, was independent of the presence of Ffh, and was found both with vacant 70S ribosomes or isolated 30S subunits. Here the crosslink was localized to the 3'-terminal region of the 16S rRNA, from positions 29-50 of the 4.5S RNA. Cross-linking to ribosomal protein S1 was also observed. The known crystal structure of the protein Ffh/4.5S RNA fragment complex was extrapolated by computer modeling so as to include the whole 4.5S molecule, and this was docked onto the ribosome using the crosslinking data. The results are discussed in terms of multiple functions and binding sites of the 4.5S RNA.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , Ribosomes/metabolism , Signal Recognition Particle/metabolism , Base Sequence , Binding Sites , Cross-Linking Reagents , Escherichia coli Proteins/chemistry , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Protein Conformation , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/metabolism , RNA, Ribosomal, 23S/chemistry , RNA, Ribosomal, 23S/metabolism , Ribonuclease H , Signal Recognition Particle/chemistry , Thiouridine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...