Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744153

ABSTRACT

The effects of severe plastic deformation (SPD) with a forward-backward rotating die (KOBO extrusion) on pure magnesium, in the form of cold-compacted powder, sintered powder, or cast ingots as reference, were examined. This method is known to reinforce metals, but the role of the initial form of magnesium applied in the fabrication of metal-based rods, as well as related phenomena, has not been characterized until now. The problem is important in the potential processing of commercial metal powders, the recycling of metal shavings, and the fabrication of metal matrix composites with discontinuous reinforcing phases. In the presented experiments, rods of 8 mm in diameter and 400 mm in length were obtained, and the structural effects induced by KOBO that occurred on a macro- and microscale on the surface and cross sections were characterized. Changes in the size and orientation of α-Mg crystallites were determined by XRD. The porosity, hardness, tensile strength, and compressive strength were measured, and the mechanisms of decohesion dependent on starting metal form were analyzed. After KOBO extrusion, significant differences were observed in the microstructure and properties between the materials derived from cold-compacted powder, sintered powder, and reference cast magnesium. Due to the application of KOBO, apart from α-Mg grain refinement, the MgO derived from the initial powder's surface was refined to fine regular particles surrounded by magnesium. Their bands curved in the perpendicular plane and were oriented with the extrusion direction of the formed network, which augmented some mechanical properties and changed the decohesion mechanism. The conducted experiments revealed that before extrusion by KOBO, the magnesium powder required sintering under pressure.

2.
Materials (Basel) ; 14(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34772094

ABSTRACT

Designers' efforts to use the lightest possible materials with very good mechanical properties mean that in recent years magnesium alloys have been increasingly used. It is well-known that the use of various plastic working processes allows achieving even better strength properties of the material, often without significant loss of plastic properties in relation to the properties of products obtained in the casting process. The article presents the results of research on microstructural changes and mechanical properties of the alloy AZ91 (MgAl9Zn1) occurring in samples subjected to conventional plastic deformation and the KOBO method. The obtained results were compared to the properties of reference samples, i.e., cast samples. The article presents the advantage of using the low-temperature KOBO method compared to the high-temperature deformation in a conventional manner. Moreover, it has been shown that the use of KOBO extrusion allows the alloy AZ91 (MgAl9Zn1) to obtain superplasticity properties with an elongation of up to 577% compared to the cast reference sample, which is generally classified as difficult for plastic deformation.

3.
Materials (Basel) ; 14(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207671

ABSTRACT

Materials were obtained from commercial zirconium powders. 1 mass%, 2.5 mass% and 16 mass% of niobium powders were used as the reinforcing phase. The SPS method and the extrusion method classified as the SPD method were used. Relative density materials of up to 98% were obtained. The microstructure of the sintered Zr-xNb materials differs from that of the extruded materials. Due to the flammability of zirconium powders, no mechanical alloying was used; only mixing of zirconium and niobium powders in water and isopropyl alcohol. Niobium was grouped in clusters with an average niobium particle size of about 10 µm up to 20 µm. According to the Zr-Nb phase equilibrium system, the stable phase at RT was the hexagonal α-phase. The tests were carried out for materials without the additional annealing process. The effect of niobium as a ß-Zr phase stabilizer is confirmed by XRD. Materials differed in their phase composition, and for both methods the ß-Zr phase was present in obtained materials. A very favorable effect of niobium on the increase in corrosion resistance was observed, compared to the material obtained from the powder without the addition of niobium.

SELECTION OF CITATIONS
SEARCH DETAIL
...