Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ERJ Open Res ; 9(5)2023 Sep.
Article in English | MEDLINE | ID: mdl-37753287

ABSTRACT

Background: Computed tomography (CT) is increasingly used for assessing skeletal muscle characteristics. In cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), reduced limb muscle mass predicts poor clinical outcomes. However, the degree to which quantity or quality of respiratory and nonrespiratory muscles is affected by these diseases remains controversial. Methods: Thoracic CT images of 29 CF, 21 COPD and 20 normal spirometry control subjects were analysed to measure indices of muscle quantity (volume or cross-sectional area) and quality (radiodensity) in respiratory (diaphragm, abdominal) and nonrespiratory (pectoralis, lumbar paraspinal) muscles. Multivariable linear regression assessed relationships of CT measurements with body mass index (BMI), forced expiratory volume in 1 s (FEV1) % pred, inflammation and infection biomarkers, nutritional status and CF genotype. Results: Diaphragm volume in CF was significantly higher than in COPD (by 154%) or controls (by 140%). Abdominal muscle area in CF was also greater than in COPD (by 130%). Nonrespiratory muscles in COPD had more low radiodensity muscle (marker of lipid content) compared to CF and controls. In CF but not COPD, higher BMI and FEV1 % pred were independently associated with higher diaphragm and/or abdominal muscle quantity indices. Serum creatinine also predicted respiratory and nonrespiratory muscle quantity in CF, whereas other biomarkers including genotype correlated poorly with muscle CT parameters. Conclusions: Our data suggest that the CF diaphragm undergoes hypertrophic remodelling, whereas in COPD the nonrespiratory muscles show altered muscle quality consistent with greater lipid content. Thoracic CT can thus identify distinctive respiratory and nonrespiratory muscle remodelling signatures associated with different chronic lung diseases.

2.
Neurobiol Learn Mem ; 136: 196-203, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27773595

ABSTRACT

A single bout of cardiovascular exercise performed immediately after practicing a motor task improves the long-term retention of the skill through an optimization of memory consolidation. However, the specific brain mechanisms underlying the effects of acute cardiovascular exercise on procedural memory are poorly understood. We sought to determine if a single bout of exercise modifies corticospinal excitability (CSE) during the early stages of memory consolidation. In addition, we investigated if changes in CSE are associated with exercise-induced off-line gains in procedural memory. Participants practiced a serial reaction time task followed by either a short bout of acute exercise or a similar rest period. To monitor changes in CSE we used transcranial magnetic stimulation applied to the primary motor cortex (M1) at baseline, 15, 35, 65 and 125min after exercise or rest. Participants in the exercise condition showed larger (∼24%) improvements in procedural memory through consolidation although differences between groups did not reach statistical significance. Exercise promoted an increase in CSE, which remained elevated 2h after exercise. More importantly, global increases in CSE following exercise correlated with the magnitude of off-line gains in skill level assessed in a retention test performed 8h after motor practice. A single bout of exercise modulates short-term neuroplasticity mechanisms subserving consolidation processes that predict off-line gains in procedural memory.


Subject(s)
Exercise/physiology , Memory Consolidation/physiology , Motor Cortex/physiology , Motor Skills/physiology , Neuronal Plasticity/physiology , Pyramidal Tracts/physiology , Transcranial Magnetic Stimulation/methods , Adult , Female , Humans , Male , Young Adult
3.
Exerc Sport Sci Rev ; 44(2): 81-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26872291

ABSTRACT

We present new evidence supporting the hypothesis that the effects of cardiovascular exercise on memory can be regulated in a time-dependent manner. When the exercise stimulus is coupled temporally with specific phases of the memory formation process, a single bout of cardiovascular exercise may be sufficient to improve memory.


Subject(s)
Cardiovascular Physiological Phenomena , Exercise/psychology , Memory/physiology , Brain/physiology , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...