Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(26): 266201, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38215361

ABSTRACT

We explore dynamic structural superlubricity for the case of a relatively large contact area, where the friction force is proportional to the area (exceeding ∼100 nm^{2}) experimentally, numerically, and theoretically. We use a setup composed of two molecular smooth incommensurate surfaces: graphene-covered tip and substrate. The experiments and molecular dynamic simulations demonstrate independence of the friction force on the normal load for a wide range of normal loads and relative surface velocities. We propose an atomistic mechanism for this phenomenon, associated with synchronic out-of-plane surface fluctuations of thermal origin, and confirm it by numerical experiments. Based on this mechanism, we develop a theory for this type of superlubricity and show that friction force increases linearly with increasing temperature and relative velocity for velocities larger than a threshold velocity. The molecular dynamic results are in a fair agreement with predictions of the theory.

2.
Phys Rev E ; 102(3-1): 032901, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33075924

ABSTRACT

Collapse modes in compressed simple cubic (SC) and body-centered cubic (BCC) periodic arrangements of elastic frictionless beads were studied numerically using the discrete element method. Under pure hydrostatic compression, the SC arrangement tends to transform into a defective hexagonal close-packed or amorphous structure. The BCC assembly exhibits several modes of collapse, one of which, identified as cI16 structure, is consistent with the behavior of BCC metals Li and Na under high pressure. The presence of a deviatoric stress leads to the transformation of the BCC structure into face-centered cubic (FCC) one via the Bain path. The observed effects expand the knowledge on possible packings of soft elastic spheres and transformations between them, while providing an unexpected link with the mechanical behavior of certain atomic systems.

3.
Sci Rep ; 8(1): 6232, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29651111

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Sci Rep ; 7(1): 17301, 2017 12 11.
Article in English | MEDLINE | ID: mdl-29230060

ABSTRACT

Natural arches, pillars and other exotic sandstone formations have always been attracting attention for their unusual shapes and amazing mechanical balance that leave a strong impression of intelligent design rather than the result of a stochastic process. It has been recently demonstrated that these shapes could have been the result of the negative feedback between stress and erosion that originates in fundamental laws of friction between the rock's constituent particles. Here we present a deeper analysis of this idea and bridge it with the approaches utilized in shape and topology optimisation. It appears that the processes of natural erosion, driven by stochastic surface forces and Mohr-Coulomb law of dry friction, can be viewed within the framework of local optimisation for minimum elastic strain energy. Our hypothesis is confirmed by numerical simulations of the erosion using the topological-shape optimisation model. Our work contributes to a better understanding of stochastic erosion and feasible landscape formations that could be found on Earth and beyond.

5.
Langmuir ; 31(45): 12323-7, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26411396

ABSTRACT

The geometry and internal packing of twisted ropes composed of carbon nanotubes (CNTs) are considered, and a numerical solution in the context of the mesoscopic distinct element method (MDEM) is proposed. Compared to the state of the art, MDEM accounts in a computationally tractable manner for both the deformation of the fiber and the distributed van der Waals cohesive energy between fibers. These features enable us to investigate the torsional response in a new regime where the twisted rope develops packing rearrangements and aspect-ratio-dependent geometric nonlinearities. MDEM emerges as a robust simulation method for studying twisted agglomerates comprising semiflexible nanofibers.

6.
Soft Matter ; 10(43): 8635-40, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25212697

ABSTRACT

We combine experiments and distinct element method simulations to understand the stability of rings and rackets formed by single-walled carbon nanotubes assembled into ropes. Bending remains a soft deformation mode in ropes because intra-rope sliding of the constituent nanotubes occurs with ease. Our simulations indicate that the formation of these aggregates can be attributed to the mesoscopic mechanics of entangled nanotubes and to the sliding at the contacts. Starting from the single-walled carbon nanotubes, the sizes of the rings and rackets' heads increase with the rope diameter, indicating that the stability of the experimental aggregates can be largely explained by the competition between bending and van der Waals adhesion energies. Our results and simulation method should be useful for understanding nanoscale fibers in general.

SELECTION OF CITATIONS
SEARCH DETAIL
...