Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Appl Fluoresc ; 9(4)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34256360

ABSTRACT

Plasmonic nanostructures, of which gold nanoparticles are the most elementary example, owe their unique properties to localized surface plasmons (LSP), the modes of free electron oscillation. LSP alter significantly electromagnetic field in the nanostructure neighborhood (i.e., near-field), which can modify the electric dipole transition rates in organic emitters. This study aims at investigating the influence of Au@SiO2core-shell nanoparticles on the photophysics of porphyrins covalently attached to the nanoparticles surface. Guided by theoretical predictions, three sets of gold nanoparticles of different sizes were coated with a silica layer of similar thickness. The outer silica surface was functionalized with either free-basemeso-tetraphenylporphyrin or its zinc complex. Absorption and emission bands of porphyrin overlap in energy with a gold nanoparticle LSP resonance that provides the field enhancement. Silica separates the emitters from the gold surface, while the gold core size tunes the energy of the LSP resonance. The signatures of weak-coupling regime have been observed. Apart from modified emission profiles and shortened S1lifetimes, Q band part intensity of the excitation spectra significantly increased with respect to the Soret band. The results were explained using classical transfer matrix simulations and electronic states kinetics, taking into account the photophysical properties of each chromophore. The calculations could reasonably well predict and explain the experimental outcomes. The discrepancies between the two were discussed.

2.
J Mol Recognit ; 31(1)2018 01.
Article in English | MEDLINE | ID: mdl-28856782

ABSTRACT

Formation of the deposits of protein aggregates-amyloid fibrils in an intracellular and intercellular space-is common to a large group of amyloid-associated disorders. Among the approaches to develop of therapy of such disorders is the use of agents preventing protein fibrillization. Polyaromatic complexes-porphyrins and phthalocyanines-are known as compounds possessing anti-fibrillogenic activity. Here, we explore the impact of related macrocyclic complexes-phthalocyanines (Pc) and octaphenyl porphyrazines (Pz) of Mg and Zn-on aggregation of amyloidogenic protein insulin. Pz complexes are firstly reported as compounds able to affect protein fibrillization. The effect of Pc and Pz complexes on the kinetics and intensity of insulin aggregation was studied by the fluorescent assay using amyloid sensitive cyanine dye. This has shown the impact of metal ion on the anti-fibrillogenic properties of macrocyclic complexes-the effect on the fibrillization kinetics of Mg-containing compounds is much more pronounced comparing to that of Zn analogues. Scanning electron microscopy experiments have demonstrated that filamentous fibrils are the main product of aggregation both for free insulin and in the presence of macrocyclic complexes. However, those fibrils are distinct by their length and proneness to lateral aggregation. The Pc complexes cause the increase in variation of fibrils length 0.9 to 2.7 nm in opposite to 1.4 to 2.0 nm for free insulin, whereas Pz complexes cause certain shortening of the fibrils to 0.8 to 1.6 nm. The averaged size of the fibrils population was estimated by dynamic light scattering; it correlates with the size of single fibrils detected by scanning electron microscopy.


Subject(s)
Insulin/chemistry , Magnesium/chemistry , Zinc/chemistry , Amyloid/chemistry , Amyloid/ultrastructure , Coordination Complexes/chemistry , Indoles/chemistry , Isoindoles , Kinetics , Metalloporphyrins/chemistry , Particle Size , Protein Aggregates
SELECTION OF CITATIONS
SEARCH DETAIL
...