Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Pharmacoecon Open ; 6(1): 47-62, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34309818

ABSTRACT

OBJECTIVE: The aim was to estimate the cost-effectiveness of inotuzumab ozogamicin (InO) versus standard of care chemotherapy (SoC) for adults with relapsed or refractory B cell acute lymphoblastic leukaemia (R/R ALL) in Sweden and Norway, and compare this to evaluations made by the health technology assessment (HTA) authorities Tandvårds- och läkemedelsförmånsverket (TLV) and the Norwegian Medicines Agency (NoMA). MATERIALS AND METHODS: A partitioned survival model was developed to determine incremental cost-effectiveness ratios (ICERs) for InO versus SoC. Parametric survival models were fit to overall survival and progression-free survival Kaplan-Meier data from the INO-VATE ALL phase III trial. Two base cases were run using (1) Swedish and (2) Norwegian inputs (costs and discount rates). Core clinical inputs and utilities did not differ between countries. Analyses were then conducted to reflect the preferred assumptions of TLV and NoMA. Univariate and multivariate sensitivity analyses were performed. RESULTS: The base case deterministic ICERs for InO versus SoC were €16,219/quality-adjusted life years (QALY) in Sweden (probabilistic €19,415) and €44,405/QALY in Norway (probabilistic €47,305). The ICERs using our model but applying the preferred assumptions of TLV or NoMA were €74,061/QALY (probabilistic €77,484) and €59,391/QALY (probabilistic €63,632), respectively. Differences between our base cases and the ICERs with TLV and NoMA settings were mainly explained by the exclusion of productivity costs and use of pooled post-haematopoietic stem-cell transplant (post-HSCT) survival in Sweden and use of higher HSCT costs in Norway. All ICERs remained below the approximated willingness-to-pay thresholds. The probability of InO being cost-effective ranged from 77 to 99% versus SoC. CONCLUSIONS: InO can likely be considered cost-effective versus SoC under our and the HTA-preferred settings.

2.
Phys Med ; 24(2): 117-21, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18291697

ABSTRACT

I-ImaS (Intelligent Imaging Sensors) is a European project aiming to produce real-time adaptive X-ray imaging systems using Monolithic Active Pixel Sensors (MAPS) to create images with maximum diagnostic information within given dose constraints. Initial systems concentrate on mammography and cephalography. In our system, the exposure in each image region is optimised and the beam intensity is a function of tissue thickness and attenuation, and also of local physical and statistical parameters in the image. Using a linear array of detectors, the system will perform on-line analysis of the image during the scan, followed by optimisation of the X-ray intensity to obtain the maximum diagnostic information from the region of interest while minimising exposure of diagnostically less important regions. This paper presents preliminary images obtained with a small area CMOS detector developed for this application. Wedge systems were used to modulate the beam intensity during breast and dental imaging using suitable X-ray spectra. The sensitive imaging area of the sensor is 512 x 32 pixels 32 x 32 microm(2) in size. The sensors' X-ray sensitivity was increased by coupling to a structured CsI(Tl) scintillator. In order to develop the I-ImaS prototype, the on-line data analysis and data acquisition control are based on custom-developed electronics using multiple FPGAs. Images of both breast tissues and jaw samples were acquired and different exposure optimisation algorithms applied. Results are very promising since the average dose has been reduced to around 60% of the dose delivered by conventional imaging systems without decrease in the visibility of details.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted/instrumentation , Algorithms , Biophysical Phenomena , Biophysics , Female , Humans , Jaw/diagnostic imaging , Mammography/instrumentation , Mammography/statistics & numerical data , Radiography, Dental/instrumentation , Radiography, Dental/statistics & numerical data
3.
Biol Reprod ; 71(6): 1852-61, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15286035

ABSTRACT

Prenatal exposure to environmental chemicals that interfere with the androgen signaling pathway can cause permanent adverse effects on reproductive development in male rats. The objectives of this study were to 1) determine whether a documented antiandrogen butyl benzyl phthalate (BBP) and/or linuron (an androgen receptor antagonist) would decrease fetal testosterone (T) production, 2) describe reproductive developmental effects of linuron and BBP in the male, 3) examine the potential cumulative effects of linuron and BBP, and 4) investigate whether treatment-induced changes to neonatal anogenital distance (AGD) and juvenile areola number were predictive of adult reproductive alterations. Pregnant rats were treated with either corn oil, 75 mg/kg/day of linuron, 500 mg/kg/day of BBP, or a combination of 75 mg/kg/day linuron and 500 mg/kg/day BBP from gestational Day 14 to 18. A cohort of fetuses was removed to assess male testicular T and progesterone production, testicular T concentrations, and whole-body T concentrations. Male offspring from the remaining litters were assessed for AGD and number of areolae and then examined for alterations as young adults. Prenatal exposure to either linuron or BBP or BBP + linuron decreased T production and caused alterations to androgen-organized tissues in a dose-additive manner. Furthermore, treatment-related changes to neonatal AGD and infant areolae significantly correlated with adult AGD, nipple retention, reproductive malformations, and reproductive organ and tissue weights. In general, consideration of the dose-response curves for the antiandrogenic effects suggests that these responses were dose additive rather than synergistic responses. Taken together, these data provide additional evidence of cumulative effects of antiandrogen mixtures on male reproductive development.


Subject(s)
Androgen Antagonists/pharmacology , Linuron/pharmacology , Phthalic Acids/pharmacology , Sex Differentiation/drug effects , Anal Canal/anatomy & histology , Androgen Antagonists/administration & dosage , Animals , Animals, Newborn , Dose-Response Relationship, Drug , Female , Fetus/metabolism , Genitalia, Male/anatomy & histology , Genitalia, Male/embryology , Linuron/administration & dosage , Male , Osmolar Concentration , Phthalic Acids/administration & dosage , Pregnancy , Prenatal Exposure Delayed Effects , Progesterone/metabolism , Rats , Rats, Sprague-Dawley , Testis/metabolism , Testosterone/metabolism
4.
Physiol Behav ; 79(2): 151-6, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12834785

ABSTRACT

During mammalian sexual differentiation, the androgens, testosterone and dihydrotestosterone are critical for the organization of the male phenotype. In rats, play behavior is sexually dimorphic. Administration of exogenous androgens during the perinatal period results in masculine-like play behavior of juveniles. Recently, there has been increasing concern about the potential for environmental endocrine-disrupting chemicals (EDCs) to alter sexual differentiation in mammals. One such EDC is the fungicide and androgen receptor (AR) antagonist, vinclozolin. We tested whether developmental exposure to an EDC could alter androgen-dependent behaviors such as play. To examine this possibility, neonatal male rats were injected from Postnatal Days (PND) 2 to 3 with corn oil, pharmacological antiandrogen flutamide (50 mg/kg/day) or vinclozolin (200 mg/kg/day); whereas neonatal females were treated either with corn oil or testosterone propionate (TP, 250 microg/kg/day). At PNDs 36-37, animals were observed for social play. Behaviors associated with general social activity, such as sniffing and dorsal contact, were unaffected by treatment or sex. However, play behavior in males treated with flutamide or vinclozolin was significantly reduced to near-female levels when compared to control males. Play behavior in females exposed to TP during the neonatal period was significantly increased when compared with control females. Hence, this study suggests that perinatal exposure to vinclozolin, an environmental antiandrogen, can alter androgen-dependent behavior, such as play, in the male rat.


Subject(s)
Androgen Antagonists/pharmacology , Animals, Newborn/psychology , Behavior, Animal/drug effects , Fungicides, Industrial/pharmacology , Oxazoles/pharmacology , Play and Playthings , Aging/psychology , Animals , Animals, Newborn/growth & development , Female , Flutamide/pharmacology , Interpersonal Relations , Male , Rats , Rats, Sprague-Dawley
5.
Toxicology ; 181-182: 371-82, 2002 Dec 27.
Article in English | MEDLINE | ID: mdl-12505339

ABSTRACT

The US Environmental Protection Agency (EPA) is developing a screening and testing program for endocrine disrupting chemicals (EDCs) to detect alterations of hypothalamic-pituitary-gonadal (HPG) function, estrogen (ER), androgen (AR) and thyroid hormone synthesis and AR and ER receptor-mediated effects in mammals and other animals. High priority chemicals would be evaluated in the Tier 1 Screening (T1S) battery and chemicals positive in T1S would then be tested (Tier 2). T1S includes in vitro ER and AR receptor binding and/or gene expression, an assessment of steroidogenesis and mammalian (rat) and nonmammalian in vivo assays (Table 1). In vivo, the uterotropic assay detects estrogens and antiestrogens, while steroidogenesis, antithyroid activity, (anti)estrogenicity and HPG function are assessed in a 'Pubertal Female Assay'. (Anti-) androgens are detected in the Hershberger Assay (weight of AR-dependent tissues in castrate-immature-male rats). Fish and amphibian assays also are being developed. The fathead minnow assay can identify EDCs displaying several mechanisms of concern, including AR and ER receptor agonists and antagonists and inhibitors of steroid hormone synthesis. An amphibian metamorphosis assay is being developed to detect thyroid-active substances. Several alternative mammalian in vivo assays have been proposed. Of these, a short-term pubertal male rat assay appears most promising. An in utero-lactational screening protocol also is being evaluated. For Tier 2, the numbers of endocrine sensitive endpoints and offspring (F1) examined in multigenerational tests need to be expanded for EDCs. Consideration should be given to tailoring T2, based on the results of T1S. Tier 1 and 2 also should examine relevant mixtures of EDCs. Toxicants that induce malformations in AR-dependent tissues produce cumulative effects even when two chemicals act via different mechanisms of action.


Subject(s)
Endocrine Glands/drug effects , Endocrine System Diseases/chemically induced , Xenobiotics/toxicity , Animals , Biological Assay , Endocrine System Diseases/pathology , Humans , Toxicology/methods , United States , United States Environmental Protection Agency
6.
Environ Health Perspect ; 110 Suppl 3: 435-9, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12060841

ABSTRACT

In mammals, exposure to androgens early in development is essential for masculinization of the male reproductive phenotype. Male fetuses exposed to antiandrogens during perinatal life are permanently demasculinized in their morphology and physiology, whereas exposure to exogenous androgens permanently masculinizes females. In some litter-bearing species, proximity(italic) in utero(/italic) of females to males can partially masculinize female siblings and alter their responsiveness to endocrine-disrupting compounds. However, in our strain of rat (CD-SD Charles River), intrauterine position does not significantly influence testosterone concentrations and anogenital distance of fetuses. In comparison, administration of testosterone propionate to pregnant females, at doses that doubled fetal female testosterone levels, did masculinize the reproductive system. Discovery of androgen-active chemicals in the environment has placed increased emphasis on describing the reproductive and behavioral effects of both natural and environmental androgens and antiandrogens. Recently, the effects of an antiandrogen, vinclozolin, on the brain and behavior were cited as a special concern by the U.S. Environmental Protection Agency in its risk assessment of this pesticide. In rats, one such behavior that is perinatally organized by androgens is social play. Males play more than females, and administration of exogenous androgens during the neonatal period alters the juvenile expression of this sexually dimorphic behavior. Vinclozolin is an androgen receptor antagonist that inhibits androgen-dependent tissue growth in vivo. We were interested in whether developmental exposure to vinclozolin could also alter androgen-dependent behaviors such as play. Neonatal male rats were injected on postnatal days (PNDs) 2 and 3 with corn oil, the pharmacologic antiandrogen flutamide (50 mg/kg), or vinclozolin (200 mg/kg). On PNDs 36-37 animals were observed for social play. Behaviors associated with general social activity such as sniffing and dorsal contact were unaffected by treatment. However, play behavior in males treated with flutamide or vinclozolin was significantly reduced, resembling levels of play characteristic of females rather than untreated males. Therefore, this study demonstrates that perinatal exposure to vinclozolin, an environmental antiandrogen, can alter androgen-dependent play behavior in the male rat.


Subject(s)
Androgen Antagonists/adverse effects , Androgens/pharmacology , Environmental Exposure , Gonads/growth & development , Oxazoles/adverse effects , Play and Playthings , Social Behavior , Animals , Animals, Newborn , Female , Male , Rats , Rats, Sprague-Dawley , Reproduction , Risk Assessment
7.
Hum Reprod Update ; 7(3): 248-64, 2001.
Article in English | MEDLINE | ID: mdl-11392371

ABSTRACT

Chemicals that act as androgen receptor (AR) agonists and antagonists or inhibit fetal steroidogenesis can induce reproductive malformations in humans and laboratory animals. Several environmental chemicals disrupt development in rats and/or rabbits at fetal concentrations at, or near, exposure levels seen in some segments of the human population. In rats, fetal tissues concentrations of 10-20 p.p.m. of the DDT metabolite, p,p'-DDE, are correlated with reproductive abnormalities in male offspring. These concentrations are similar to those measured in first-trimester human fetal tissues in the late 1960s. The pesticides vinclozolin, procymidone, linuron and DDT are AR antagonists. They reduce male rat anogenital distance, and induce areolas at relatively low dosages. Hypospadias, agenesis of the sex accessory tissues and retained nipples are seen in the middle dosages, while undescended testes and epididymal agenesis are seen in the highest doses. Phthalate esters (PE) inhibit testosterone synthesis during fetal life, but do not appear to be AR antagonists. Prenatal administration of a single low dose of dioxin (50-1,000 ng TCDD/kg) alters the differentiation of androgen-dependent tissues at p.p.t. concentrations, but the mechanism of action likely involves interaction with a hormone-like nuclear transcription factor, the hormone-like receptor AhR, rather than AR. p,p'-DDT and p,p'-DDE, vinclozolin and di-n-butyl phthalate affect reproductive function in rabbits when administered during prenatal and/or neonatal life. Cryptorchidism and carcinoma in situ-like (CIS) testicular lesions were seen in male rabbits treated during development with p,p'-DDT or p,p'-DDE. Extrapolation of effects from rodents to humans would be enhanced if future studies incorporate determination of tissue concentrations of the active metabolites. Knowledge of the tissue concentrations of the active toxicants also would provide an important link to in-vitro studies, which provide more useful mechanistic information when they are executed at relevant concentrations.


Subject(s)
Androgen Antagonists/pharmacology , Environmental Exposure , Genitalia, Male/drug effects , Genitalia, Male/growth & development , Animals , Animals, Laboratory/growth & development , Humans , Male
8.
Toxicol Sci ; 58(2): 339-49, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11099646

ABSTRACT

Phthalate esters (PE) such as DEHP are high production volume plasticizers used in vinyl floors, food wraps, cosmetics, medical products, and toys. In spite of their widespread and long-term use, most PE have not been adequately tested for transgenerational reproductive toxicity. This is cause for concern, because several recent investigations have shown that DEHP, BBP, DBP, and DINP disrupt reproductive tract development of the male rat in an antiandrogenic manner. The present study explored whether the antiandrogenic action of DEHP occurs by (1) inhibiting testosterone (T) production, or by (2) inhibiting androgen action by binding to the androgen receptor (AR). Maternal DEHP treatment at 750 mg/kg/day from gestational day (GD) 14 to postnatal day (PND) 3 caused a reduction in T production, and reduced testicular and whole-body T levels in fetal and neonatal male rats from GD 17 to PND 2. As a consequence, anogenital distance (AGD) on PND 2 was reduced by 36% in exposed male, but not female, offspring. By GD 20, DEHP treatment also reduced testis weight. Histopathological evaluations revealed that testes in the DEHP treatment group displayed enhanced 3ss-HSD staining and increased numbers of multifocal areas of Leydig cell hyperplasia as well as multinucleated gonocytes as compared to controls at GD 20 and PND 3. In contrast to the effects of DEHP on T levels in vivo, neither DEHP nor its metabolite MEHP displayed affinity for the human androgen receptor at concentrations up to 10 microM in vitro. These data indicate that DEHP disrupts male rat sexual differentiation by reducing T to female levels in the fetal male rat during a critical stage of reproductive tract differentiation.


Subject(s)
Abnormalities, Drug-Induced/etiology , Diethylhexyl Phthalate/toxicity , Genitalia, Male/abnormalities , Plasticizers/toxicity , Sex Differentiation/drug effects , Testosterone/biosynthesis , Animals , Body Weight/drug effects , Female , Leydig Cells/drug effects , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Testis/drug effects , Testis/metabolism , Testis/pathology
9.
Toxicol Sci ; 58(2): 350-65, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11099647

ABSTRACT

In mammals, exposure to antiandrogenic chemicals during sexual differentiation can produce malformations of the reproductive tract. Perinatal administration of AR antagonists like vinclozolin and procymidone or chemicals like di(2-ethylhexyl) phthalate (DEHP) that inhibit fetal testicular testosterone production demasculinize the males such that they display reduced anogenital distance (AGD), retained nipples, cleft phallus with hypospadias, undescended testes, a vaginal pouch, epididymal agenesis, and small to absent sex accessory glands as adults. In addition to DEHP, di-n-butyl (DBP) also has been shown to display antiandrogenic activity and induce malformations in male rats. In the current investigation, we examined several phthalate esters to determine if they altered sexual differentiation in an antiandrogenic manner. We hypothesized that the phthalate esters that altered testis function in the pubertal male rat would also alter testis function in the fetal male and produce malformations of androgen-dependent tissues. In this regard, we expected that benzyl butyl (BBP) and diethylhexyl (DEHP) phthalate would alter sexual differentiation, while dioctyl tere- (DOTP or DEHT), diethyl (DEP), and dimethyl (DMP) phthalate would not. We expected that the phthalate mixture diisononyl phthalate (DINP) would be weakly active due to the presence of some phthalates with a 6-7 ester group. DEHP, BBP, DINP, DEP, DMP, or DOTP were administered orally to the dam at 0.75 g/kg from gestational day (GD) 14 to postnatal day (PND) 3. None of the treatments induced overt maternal toxicity or reduced litter sizes. While only DEHP treatment reduced maternal weight gain during the entire dosing period by about 15 g, both DEHP and DINP reduced pregnancy weight gain to GD 21 by 24 g and 14 g, respectively. DEHP and BBP treatments reduced pup weight at birth (15%). Male (but not female) pups from the DEHP and BBP groups displayed shortened AGDs (about 30%) and reduced testis weights (about 35%). As infants, males in the DEHP, BBP, and DINP groups displayed femalelike areolas/nipples (87, 70, and 22% (p < 0.01), respectively, versus 0% in other groups). All three of the phthalate treatments that induced areolas also induced a significant incidence of reproductive malformations. The percentages of males with malformations were 82% (p < 0.0001) for DEHP, 84% (p < 0.0001) for BBP, and 7.7% (p < 0.04) in the DINP group. In summary, DEHP, BBP, and DINP all altered sexual differentiation, whereas DOTP, DEP, and DMP were ineffective at this dose. Whereas DEHP and BBP were of equivalent potency, DINP was about an order of magnitude less active.


Subject(s)
Fetus/drug effects , Phthalic Acids/toxicity , Sex Differentiation/drug effects , Abnormalities, Drug-Induced , Androgen Antagonists/toxicity , Animals , Diethylhexyl Phthalate/toxicity , Female , Humans , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Sexual Behavior, Animal/drug effects , Species Specificity
10.
Toxicol Sci ; 56(2): 389-99, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10910998

ABSTRACT

Antiandrogenic chemicals alter sex differentiation by several different mechanisms. Some, like flutamide, procymidone, or vinclozolin compete with androgens for the androgen receptor (AR), inhibit AR-DNA binding, and alter androgen-dependent gene expression in vivo and in vitro. Finasteride and some phthalate esters demasculinize male rats by inhibiting fetal androgen synthesis. Linuron, which is a weak competitive inhibitor of AR binding (reported Ki of 100 microM), alters sexual differentiation in an antiandrogenic manner. However, the pattern of malformations more closely resembles that produced by the phthalate esters than by vinclozolin treatment. The present study was designed to determine if linuron acted as an AR antagonist in vitro and in vivo. In vitro, we (1) confirmed the affinity of linuron for the rat AR, and found (2) that linuron binds human AR (hAR), and (3) acts as an hAR antagonist. Linuron competed with an androgen for rat prostatic AR (EC(50) = 100-300 microM) and human AR (hAR) in a COS cell-binding assay (EC(50) = 20 microM). Linuron inhibited dihydrotestosterone (DHT)-hAR induced gene expression in CV-1 and MDA-MB-453-KB2 cells (EC(50) = 10 microM) at concentrations that were not cytotoxic. In short-term in vivo studies, linuron treatment reduced testosterone- and DHT-dependent tissue weights in the Hershberger assay (oral 100 mg/kg/d for 7 days, using castrate-immature-testosterone propionate-treated male rats; an assay used for decades to screen for AR agonists and antagonists) and altered the expression of androgen-regulated ventral prostate genes (oral 100 mg/kg/d for 4 days). Histological effects of in utero exposure to linuron (100 mg/kg/d, day 14-18) or DBP (500 mg/kg/d, day 14 to postnatal day 3) on the testes and epididymides also are shown here. Taken together, these results support the hypothesis that linuron is an AR antagonist both in vivo and in vitro, but it remains to be determined if linuron alters sexual differentiation by additional mechanisms of action.


Subject(s)
Abnormalities, Drug-Induced , Androgen Antagonists/toxicity , Genitalia, Male/abnormalities , Herbicides/toxicity , Linuron/toxicity , Animals , COS Cells , Dibutyl Phthalate/toxicity , Dihydrotestosterone/pharmacology , Dose-Response Relationship, Drug , Female , Genitalia, Male/drug effects , Genitalia, Male/pathology , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Transcriptional Activation/drug effects
11.
Toxicol Sci ; 55(1): 152-61, 2000 May.
Article in English | MEDLINE | ID: mdl-10788570

ABSTRACT

Vinclozolin is a fungicide whose metabolites are androgen receptor (AR) antagonists. Previous work in our laboratory showed that perinatal administration of vinclozolin to rats results in malformations of the external genitalia, permanent nipples, reduced anogenital distance (AGD), and reduced seminal vesicle, ventral prostate, and epididymal weights. The objectives of this study were to determine the most sensitive period of fetal development to antiandrogenic effects of vinclozolin and to identify a dosing regime that would induce malformations in all of the male offspring. Pregnant rats were dosed with 400 mg vinclozolin/kg/day on either GD 12-13, GD 14-15, GD 16-17, GD 18-19, or GD 20-21, or with corn oil (2.5 ml/kg) from GD 12 through GD 21 (Experiment 1). All 2-day periods in which significant effects were produced were included in an extended dosing period, GD 14 through GD 19, in which pregnant rats were dosed with 200 or 400 mg vinclozolin/kg (Experiment 2). In Experiment 1, significant effects of vinclozolin were observed in rats dosed on gestation days (GD) 14-15, GD 16-17, and GD 18-19, while the most significant effects were observed in rats treated on GD 16-17. These effects include reduced AGD; presence of areolas, nipples, and malformations of the phallus; and reduced levator ani/bulbocavernosus weight. In contrast, ventral prostate weight was reduced only in the GD 18-19 group. The expanded dosing regime (Experiment 2) increased the percentage of male offspring with genital malformations (> 92%), and retained nipples (100%), further reduced the weight of the ventral prostate, and reduced the weight of the seminal vesicles. In addition, malformations were more severe and included vaginal pouch and ectopic/undescended testes. The latter was induced only in the 400 mg/kg group. These data indicate that the reproductive system of the fetal male rat is most sensitive to antiandrogenic effects of vinclozolin on GD 16 and 17, although effects are more severe and 100 % of male offspring are affected with administration of vinclozolin from GD 14 through GD 19.


Subject(s)
Fungicides, Industrial/toxicity , Oxazoles/toxicity , Sexual Maturation/drug effects , Androgen Antagonists/toxicity , Animals , Embryonic and Fetal Development/drug effects , Female , Fertility/drug effects , Genitalia, Male/abnormalities , Genitalia, Male/drug effects , Genitalia, Male/embryology , Male , Organ Size/drug effects , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Long-Evans , Testis/abnormalities , Weight Gain/drug effects
12.
Toxicol Sci ; 51(2): 259-64, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10543027

ABSTRACT

Low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), administered as a single dose to the dam during gestation, alter development of the fetal rodent reproductive system. In male rat and hamster offspring, dosing with TCDD during gestation reduces epididymal and ejaculated sperm counts and delays puberty. In female rats, in utero TCDD-exposure results in reduced ovarian weight and fecundity, and induces cleft phallus and a persistent thread of tissue across the vaginal orifice. Here, we demonstrate that 2-microgram TCDD/kg, administered as a single oral dose prior to sexual differentiation, alters reproductive function in female hamster offspring, a species relatively resistant to the lethal effects of TCDD. In the current study, pregnant hamsters (P0 generation) were dosed orally with vehicle (corn oil) or 2 micrograms TCDD/kg on gestational day (GD) 11.5. P0 maternal viability, body weight, fertility, and F1 litter size did not differ between control and treated groups. In the F1 generation, body weights were permanently reduced by about 30%, vaginal opening was delayed (p < 0.0001), and vaginal estrous cycles were altered by TCDD treatment. In contrast, most treated female offspring displayed regular 4-day behavioral estrous cycles, indicating that in utero TCDD treatment did not markedly disrupt hypothalamic-pituitary-gonadal hormonal cyclicity. Although both control and TCDD-treated F1 females mated successfully with a control male (estrous cyclicity was abolished by mating), 20% of the F1 treated females did not become not pregnant (no implants). In addition, 38% of pregnant F1 females from the TCDD group died near-term, and the numbers of implants in pregnant animals (treated 5.1 versus 11.3) and pups born live (2.7 treated vs. 8.7 control) were reduced by TCDD-treatment. In the F2, survival through weaning was drastically reduced (15% treated vs. 78% for control) by TCDD treatment of P0 dams. F1 female hamster offspring exposed in utero to TCDD displayed external urogenital malformations, with most females having complete clefting of the phallus, an effect previously reported in the rat. Unlike rats exposed to TCDD (0.2-1.0 microgram/kg) on GD 15 or GD 8, hamster offspring did not display vaginal threads. These results demonstrate that in utero administration of TCDD adversely affects growth, reproductive function, and anatomy in female hamster offspring given a dosage level nearly four orders of magnitude below the dosage level toxic to the adult animal. Adverse effects of TCDD persisted through two generations (F1 and F2), even though the F1 was only indirectly exposed during gestation and lactation.


Subject(s)
Animals, Newborn/physiology , Polychlorinated Dibenzodioxins/toxicity , Prenatal Exposure Delayed Effects , Reproduction/drug effects , Teratogens/toxicity , Animals , Animals, Newborn/growth & development , Cricetinae , Dose-Response Relationship, Drug , Embryo Implantation/drug effects , Estrus/drug effects , Female , Fertility/drug effects , Growth/drug effects , Litter Size/drug effects , Male , Mesocricetus , Pregnancy , Sexual Behavior, Animal/drug effects , Sexual Maturation/drug effects , Vagina/drug effects , Vagina/growth & development
13.
Toxicol Ind Health ; 15(1-2): 37-47, 1999.
Article in English | MEDLINE | ID: mdl-10188190

ABSTRACT

This study was designed to determine if long-term exposure to high doses of methoxychlor (M) would alter pituitary or testicular endocrine functions in either an estrogenic or antiandrogenic manner. Weanling male Long-Evans hooded rats were dosed daily with M (po) at 0, 200, 300, or 400 mg kg-1 day-1 for 10 months. Methoxychlor treatment delayed puberty by as much as 10 weeks and reduced fertility and copulatory plug formation in a dose-related manner at the initial mating. During mating, M-treated males exhibited shorter latencies to mount and ejaculate versus control males, but the number of intromissions prior to ejaculation was unaffected, indicating that M enhanced the arousal level in the males in an estrogen-dependent manner. Most treated males eventually mated but time-to-pregnancy was lengthened. Very low sperm counts were associated with infertility, while prolonged delays in puberty reduced fecundity. Methoxychlor treatment with 200 to 400 mg kg-1 day-1 failed to mimic the chronic effects of a sustained (8 months) low dose of estradiol-17 beta (3-mm silastic implants) on pituitary or testicular hormone levels. Estradiol administration increased pituitary weight 4-fold, serum levels of luteinizing hormone (LH) were reduced by almost 50%, and serum prolactin was increased 40-fold, while M did not affect any of these measures. These data demonstrate that M affects the CNS, epididymal sperm numbers, and the accessory sex glands and delays mating without significantly affecting the secretion of LH, prolactin, or testosterone. These data indicate that M did not alter pituitary endocrine function in either an estrogenic or antiandrogenic manner. To our knowledge, these data provide the first in vivo example of such a pronounced degree of target tissue selectivity to an environmental endocrine-disrupting chemical.


Subject(s)
Insecticides/toxicity , Luteinizing Hormone/metabolism , Methoxychlor/toxicity , Prolactin/metabolism , Sexual Behavior, Animal/drug effects , Testis/drug effects , Animals , Dose-Response Relationship, Drug , Insecticides/pharmacology , Luteinizing Hormone/drug effects , Male , Methoxychlor/pharmacology , Pituitary Gland/anatomy & histology , Pituitary Gland/drug effects , Pituitary Gland/physiology , Prolactin/drug effects , Rats , Rats, Inbred Strains , Sperm Count/drug effects , Testis/physiology , Xenobiotics/pharmacology , Xenobiotics/toxicity
14.
Toxicol Ind Health ; 15(1-2): 48-64, 1999.
Article in English | MEDLINE | ID: mdl-10188191

ABSTRACT

In humans and rodents, exposure to antiandrogenic chemicals during sexual differentiation can produce malformations of the reproductive tract. Perinatal administration of 100 or 200 mg vinclozolin (V) kg-1 day-1 during sexual differentiation in rats induces female-like anogenital distance (AGD), retained nipples, cleft phallus with hypospadias, suprainguinal ectopic scrota/testes, a vaginal pouch, epididymal granulomas, and small to absent sex accessory glands in male offspring. Vinclozolin is metabolized to at least two active forms, M1 and M2, that display antiandrogenic activity by binding the androgen receptor (AR). Here, we present information on the reproductive effects of oral treatment with low dosage levels of V during sexual differentiation of the male rat. Vinclozolin was administered to the dam at 0, 3.125, 6.25, 12.5, 25, 50, or 100 mg kg-1 day-1 from gestational day 14 to postnatal day 3 (the period of fetal/neonatal testicular testosterone synthesis and sexual differentiation). At doses of 3.125 mg V kg-1 and above, AGD was significantly reduced in newborn male offspring and the incidence of areolas was increased. These effects were associated with permanent alterations in other androgen-dependent tissues. Ventral prostate weight in one year old male offspring was reduced in all treatment groups (significant at 6.25, 25, 50, and 100 mg kg-1 day-1), and permanent nipples were detected in males at 3.125 (1.4%), 6.25 (3.6%), 12.5 (3.9%), 25 (8.5%), 50 (91%), and 100 (100%) mg V kg-1 day-1. To date, permanent nipples have not been observed in a control male from any study in our laboratory. Vinclozolin treatment at 50 and 100 mg kg-1 day-1 induced reproductive tract malformations and reduced ejaculated sperm numbers and fertility. Even though all of the effects of V likely result from the same initial event (AR binding), the different endpoints displayed a wide variety of dose-response curves and ED50's. The dose-response data for several of the functional endpoints failed to display an obvious threshold. These data demonstrate that V produces subtle alterations in sexual differentiation of the external genitalia, ventral prostate, and nipple tissue in male rat offspring at dosage levels below the previously described no-observed-effect-level (NOEL). These effects occur at a dosage level an order of magnitude below that required to induce malformations and reduce fertility. Hence, multigenerational reproduction studies of antiandrogenic chemicals that were not conducted under the Environmental Protection Agency's new Harmonized Multigenerational Test Guidelines, which include endpoints sensitive to antiandrogens at low dosage levels, could yield a NOEL that is at least an order of magnitude too high.


Subject(s)
Fungicides, Industrial/toxicity , Genitalia, Male/growth & development , Oxazoles/toxicity , Prostate/growth & development , Administration, Oral , Animals , Dose-Response Relationship, Drug , Female , Fungicides, Industrial/pharmacology , Genitalia, Male/drug effects , Male , Nipples/drug effects , Nipples/growth & development , Oxazoles/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects , Prostate/drug effects , Rats , Rats, Long-Evans , Reproduction/drug effects , Risk Assessment
15.
Toxicol Ind Health ; 15(1-2): 94-118, 1999.
Article in English | MEDLINE | ID: mdl-10188194

ABSTRACT

Antiandrogenic chemicals alter sexual differentiation by a variety of mechanisms, and as a consequence, they induce different profiles of effects. For example, in utero treatment with the androgen receptor (AR) antagonist, flutamide, produces ventral prostate agenesis and testicular nondescent, while in contrast, finasteride, an inhibitor of 5 alpha-dihydrotestosterone (DHT) synthesis, rarely, if ever, induces such malformations. In this regard, it was recently proposed that dibutyl phthalate (DBP) alters reproductive development by a different mechanism of action than flutamide or vinclozolin (V), which are AR antagonists, because the male offsprings display an unusually high incidence of testicular and epididymal alterations--effects rarely seen after in utero flutamide or V treatment. In this study, we present original data describing the reproductive effects of 10 known or suspected anti-androgens, including a Leydig cell toxicant ethane dimethane sulphonate (EDS, 50 mg kg-1 day-1), linuron (L, 100 mg kg-1 day-1), p,p'-DDE (100 mg kg-1 day-1), ketoconazole (12-50 mg kg-1 day-1), procymidone (P, 100 mg kg-1 day-1), chlozolinate (100 mg kg-1 day-1), iprodione (100 mg kg-1 day-1), DBP (500 mg kg-1 day-1), diethylhexyl phthalate (DEHP, 750 mg kg-1 day-1), and polychlorinated biphenyl (PCB) congener no. 169 (single dose of 1.8 mg kg-1). Our analysis indicates that the chemicals discussed here can be clustered into three or four separate groups, based on the resulting profiles of reproductive effects. Vinclozolin, P, and DDE, known AR ligands, produce similar profiles of toxicity. However, p,p'-DDE is less potent in this regard. DBP and DEHP produce a profile distinct from the above AR ligands. Male offsprings display a higher incidence of epididymal and testicular lesions than generally seen with flutamide, P, or V even at high dosage levels. Linuron treatment induced a level of external effects consistent with its low affinity for AR [reduced anogenital distance (AGD), retained nipples, and a low incidence of hypospadias]. However, L treatment also induced an unanticipated degree of malformed epididymides and testis atrophy. In fact, the profile of effects induced by L was similar to that seen with DBP. These results suggest that L may display several mechanisms of endocrine toxicity, one of which involves AR binding. Chlozolinate and iprodione did not produce any signs of maternal or fetal endocrine toxicity at 100 mg kg-1 day-1. EDS produced severe maternal toxicity and a 45% reduction in size at birth, which resulted in the death of all neonates by 5 days of age. However, EDS only reduced AGD in male pups by 15%. Ketoconazole did not demasculinize or feminize males but rather displayed anti-hormonal activities, apparently by inhibiting ovarian hormone synthesis, which resulted in delayed delivery and whole litter loss. In summary, the above in vivo data suggest that the chemicals we studied alter male sexual differentiation via different mechanisms. The anti-androgens V, P, and p,p'-DDE produce flutamide-like profiles that are distinct from those seen with DBP, DEHP, and L. The effects of PCB 169 bear little resemblance to those of any known anti-androgen. Only in depth in vitro studies will reveal the degree to which one can rely upon in vivo studies, like those presented here, to predict the cellular and molecular mechanisms of developmental toxicity.


Subject(s)
Androgen Antagonists/toxicity , Genitalia, Male/abnormalities , Hydantoins , Pesticides/toxicity , Xenobiotics/toxicity , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/toxicity , Androgen Antagonists/pharmacology , Animals , Bridged Bicyclo Compounds/toxicity , Dibutyl Phthalate/toxicity , Dichlorodiphenyl Dichloroethylene/toxicity , Diethylhexyl Phthalate/toxicity , Female , Genitalia, Male/drug effects , Genitalia, Male/growth & development , Gonadal Steroid Hormones/metabolism , Ketoconazole/toxicity , Linuron/toxicity , Male , Oxazoles , Pesticides/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Receptors, Androgen/drug effects , Receptors, Androgen/physiology , Sex Differentiation/drug effects , Xenobiotics/pharmacology
16.
Toxicol Ind Health ; 15(1-2): 65-79, 1999.
Article in English | MEDLINE | ID: mdl-10188192

ABSTRACT

Vinclozolin is a well-characterized antiandrogenic fungicide. It produces adverse effects when administered during sexual differentiation, and it alters reproductive function in adult male rats by acting as an androgen-antagonist. Two active metabolites of vinclozolin, M1 and M2, compete with natural androgens for the rat and human androgen receptors (ARs), an effect that blocks androgen-induced gene expression in vivo and in vitro. In addition to their effects during perinatal life, androgens play a key role in pubertal maturation in young males. In this regard, the present study was designed to examine the effects of peripubertal oral administration of vinclozolin (0, 10, 30, or 100 mg kg-1 day-1) on morphological landmarks of puberty, hormone levels, and sex accessory gland development in male rats. In addition, as binding of the M1 and M2 to AR alter the subcellular distribution of AR by inhibiting AR-DNA binding, we examined the effects of vinclozolin on AR distribution in the target cells after in vivo treatment. We also examined serum levels of vinclozolin, M1, and M2 in the treated males so that these could be related to the effects on the reproductive tract and AR distribution. Vinclozolin treatment delayed pubertal maturation (at 30 and 100 mg kg-1 day-1) and retarded sex accessory gland and epididymal growth. Serum luteinizing hormone (LH; significant at all dosage levels) and testosterone and 5 alpha-androstane, 3 alpha, 17 beta-diol (at 100 mg kg-1 day-1) levels were increased. Testis size and sperm production, however, were unaffected. It was apparent that these effects were concurrent with subtle alterations in the subcellular distribution of AR. In control animals, most AR were in the high salt cell fraction, apparently bound to the natural ligand and DNA. Vinclozolin treatment reduced the amount of AR in the high salt (bound to DNA) fraction and it increased AR levels in the low salt (inactive, not bound to DNA) fraction. M1 and M2 were found in the serum of animals from the two highest dosage groups, but they were present at levels well below their K1 values. In summary, these results suggest that when the vinclozolin metabolites occupy a small percentage of AR in the cell, this prevents maximal AR-DNA binding and alters in vivo androgen-dependent gene expression and protein synthesis, which in turn results in obvious alterations of morphological development and serum hormone levels. It is noteworthy that similar exposures during prenatal life result in a high incidence of malformations in male rats.


Subject(s)
Fungicides, Industrial/toxicity , Oxazoles/toxicity , Receptors, Androgen/physiology , Administration, Oral , Animals , DNA/drug effects , Dose-Response Relationship, Drug , Fungicides, Industrial/pharmacokinetics , Fungicides, Industrial/pharmacology , Gene Expression Regulation/drug effects , Male , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Rats , Rats, Long-Evans , Receptors, Androgen/drug effects , Testis/drug effects , Testis/growth & development , Testosterone/blood
17.
Toxicol Ind Health ; 15(1-2): 80-93, 1999.
Article in English | MEDLINE | ID: mdl-10188193

ABSTRACT

Procymidone is a dicarboximide fungicide structurally related to the well-characterized fungicide vinclozolin. Vinclozolin metabolites bind to mammalian androgen receptors (AR) and act as AR antagonists, inhibiting androgen-dependent gene expression in vivo and in vitro by inhibiting AR-binding to DNA. The current study was designed to determine if procymidone acted as an AR antagonist in vitro and to describe the dosage levels of procymidone that alter sexual differentiation in vivo. In vitro, procymidone inhibited androgen from binding the human AR (hAR) in COS (monkey kidney) cells transfected with hAR at 3.16 microM. In vitro, procymidone acted as an androgen antagonist, inhibiting dihydrotestosterone (DHT)-induced transcriptional activation at 0.2 microM in CV-1 cells (cotransfected with the hAR and a MMTV-luciferase reporter gene). In vivo, maternal procymidone exposure at 0, 25, 50, 100, or 200 mg kg-1 day-1 during gestation and early lactation (gestational day 14 to postnatal day 3) altered reproductive development of male offspring at all dosage levels tested. Male offspring exhibited shortened anogenital distance (at 25 mg kg-1 day-1 and above), permanent nipples, reduced weight of several androgen-dependent tissues (levator ani and bulbocavernosus muscles, prostate, seminal vesicles, Cowper's gland and glans penis), and malformations (hypospadias, cleft phallus, exposed os penis, vaginal pouch, hydronephrosis, occasional hydroureter, epididymal granulomas, and ectopic, undescended testes). In addition, perinatal procymidone treatment had a marked effect on the histology of the lateral and ventral prostatic and seminal vesicular tissues of the offspring (at 50 mg kg-1 day-1 and above). These effects consisted of fibrosis, cellular infiltration, and epithelial hyperplasia. This constellation of effects is similar to that produced by perinatal exposure to vinclozolin. However, procymidone appears to be slightly less potent in inducing malformations than vinclozolin by a factor of about two. In summary, the antiandrogenic activity of procymidone was demonstrated in vivo and in vitro in cell lines transfected with hAR. Since the role of androgens in mammalian sexual differentiation is highly conserved, it is likely that humans would be adversely affected by procymidone in a predictable manner if the human fetus was exposed to sufficient levels during critical stages of intrauterine and neonatal life.


Subject(s)
Bridged Bicyclo Compounds/toxicity , Fungicides, Industrial/toxicity , Gene Expression Regulation/drug effects , Genitalia, Male/growth & development , Receptors, Androgen/drug effects , Androgen Receptor Antagonists , Animals , Bridged Bicyclo Compounds/pharmacology , Cell Line/drug effects , Dose-Response Relationship, Drug , Female , Fungicides, Industrial/pharmacology , Genitalia, Male/abnormalities , Genitalia, Male/drug effects , Male , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Long-Evans , Receptors, Androgen/genetics
18.
Toxicol Ind Health ; 14(1-2): 159-84, 1998.
Article in English | MEDLINE | ID: mdl-9460174

ABSTRACT

Exposure to toxic substances or pesticides during critical perinatal developmental periods can alter reproductive and central nervous system (CNS) function in a manner that does not compromise the growth and viability of the fetus but causes functional alterations that become apparent later in life. While some "CNS/behavioral teratogens" are mutagenic or alter cell division, other chemicals produce alterations of CNS development via endocrine-mediated mechanisms. The following discussion will focus on studies conducted primarily in our laboratory that describe how pesticides and toxic substances alter development of the reproductive and central nervous systems as a consequence of organizational or activational exposures. Abnormal behavior and morphology can result from exposure to endocrine-disrupting toxicants by altering organization of the CNS during critical stages of life or activation of behavior after puberty. Some of the toxicants that alter rodent sexual differentiation include xenoestrogens, antiandrogenic pesticides, and dioxin-like toxic substances. Chemicals that alter sex-linked nonreproductive and reproductive CNS development via nonhormonal mechanisms are also discussed in order to demonstrate that multiple mechanisms of action are involved in the development of behavioral abnormalities in pre- and perinatally exposed offspring. The fact that reproductive function (behavioral, biochemical, and morphological) can be altered via such a wide variety of mechanisms indicates that hazard identification in this area cannot rely solely on the detection of endocrine activity.


Subject(s)
Central Nervous System/drug effects , Environmental Exposure , Neurosecretory Systems/drug effects , Pesticides/toxicity , Reproduction/drug effects , Animals , Central Nervous System/growth & development , Female , Food Contamination , Genitalia/drug effects , Genitalia/growth & development , Gonadal Steroid Hormones/pharmacology , Humans , Male , Mice , Neurosecretory Systems/growth & development , Pesticides/pharmacology , Puberty/drug effects , Rats , Sexual Behavior/drug effects
19.
Toxicol Appl Pharmacol ; 146(2): 237-44, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9344891

ABSTRACT

Prenatal administration of a single dose of 1 microg TCDD/kg induces malformations of the external genitalia and subfertility in female offspring (L. E. Gray, Jr., and J. S. Ostby (1995) Toxicol. Appl. Pharmacol. 133, 285-294). A cross-fostering study indicated that in utero but not lactational TCDD exposure (1 microg TCDD/kg on gestational Day 15) induces cleft phallus, vaginal thread formation, and reduced ovarian weight. TCDD treatment on the 15th day of pregnancy at 0, 0.05, 0.20, or 0.80 microg TCDD/kg delayed vaginal opening at 0.80 microg/kg in the progeny. A persistent vaginal thread was displayed by 27% of the progeny at 0.20 and 92% at 0.80 microg TCDD/kg. These effects did not appear to result from abnormal ovarian function during prepubertal development; neither serum estradiol levels nor ovarian estradiol production were reduced in 21- or 28-day-old progeny of dams exposed to 1 microg TCDD/kg. In addition, partial to complete clefting of the phallus was displayed in TCDD-treated rats (10% at 0.20 and 60% at 0.80 microg TCDD/kg) and these dosage levels also increased the length of the urethral slit, increased distance from the urethral opening to the tip of the phallus, and decreased distance from the urethral opening to the vaginal orifice. Although fertility rates were normal, time-to-pregnancy was delayed by treatment with 0.80 microg TCDD/kg. When necropsied at 20 months of age, females from the TCDD-dose groups displayed histopathological alterations of the reproductive tract. In summary, administration of TCDD at dosage levels of 0.2, 0.8, and 1.0 microg/kg produces morphological reproductive alterations in female rat offspring as a consequence of in utero exposure.


Subject(s)
Abnormalities, Drug-Induced/etiology , Fertility/drug effects , Genitalia, Female/drug effects , Polychlorinated Dibenzodioxins/toxicity , Pregnancy, Animal , Prenatal Exposure Delayed Effects , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Estradiol/blood , Female , Genitalia, Female/abnormalities , Gestational Age , Maternal Behavior/drug effects , Organ Size/drug effects , Ovary/drug effects , Ovary/pathology , Ovary/physiology , Polychlorinated Dibenzodioxins/administration & dosage , Pregnancy , Rats , Urethra/drug effects , Uterus/drug effects
20.
Toxicol Appl Pharmacol ; 146(1): 11-20, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9299592

ABSTRACT

Male rats exposed in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) display reduced fertility as a consequence of the direct action of TCDD on the epididymides, as well as delayed puberty and altered reproductive organ weights. The current study provides dose-response data for the reproductive effects of TCDD, administered during pregnancy, with an emphasis on the effects of TCDD on testicular, epididymal, and ejaculated sperm numbers. Long Evans Hooded rats were dosed by gavage with 0, 0.05, 0.20, or 0.80 microg TCDD/kg on Day 15 of gestation. After birth, growth, viability, and developmental landmarks were monitored in both male and female offspring. Shortly after puberty (49 and 63 days of age) and at 15 months of age, male offspring were necropsied. Growth and viability of the pups were reduced only at 0.80 microg TCDD/kg, eye opening was accelerated (all dosage groups), and puberty was delayed (at 0.20 and 0.80 microg TCDD/kg). Treated progeny displayed transient reductions in ventral prostate and seminal vesicle weights, while epididymal sperm reserves and glans penis size were permanently reduced. Ejaculated sperm numbers were reduced (45% in the 0.8 and by 25% in the 0.05 and 0.2 microg TCDD/kg dosage groups) to a greater degree than were cauda or caput/corpus epididymal or testicular (unaffected) sperm numbers. In conclusion, administration of TCDD on Day 15 of pregnancy at 0.05 microg/kg altered eye opening and reduced ejaculated sperm counts, while higher dosage levels also delayed puberty and permanently reduced cauda epididymal sperm reserves.


Subject(s)
Fetus/drug effects , Genitalia, Male/drug effects , Polychlorinated Dibenzodioxins/toxicity , Animals , Dose-Response Relationship, Drug , Female , Male , Organ Size/drug effects , Pregnancy , Rats , Sperm Count/drug effects , Spermatogenesis/drug effects , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...