Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 83(15): 2471-2479, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37289018

ABSTRACT

The emergence of resistance to targeted therapies restrains their efficacy. The development of rationally guided drug combinations could overcome this currently insurmountable clinical challenge. However, our limited understanding of the trajectories that drive the outgrowth of resistant clones in cancer cell populations precludes design of drug combinations to forestall resistance. Here, we propose an iterative treatment strategy coupled with genomic profiling and genome-wide CRISPR activation screening to systematically extract and define preexisting resistant subpopulations in an EGFR-driven lung cancer cell line. Integrating these modalities identifies several resistance mechanisms, including activation of YAP/TAZ signaling by WWTR1 amplification, and estimates the associated cellular fitness for mathematical population modeling. These observations led to the development of a combination therapy that eradicated resistant clones in large cancer cell line populations by exhausting the spectrum of genomic resistance mechanisms. However, a small fraction of cancer cells was able to enter a reversible nonproliferative state of drug tolerance. This subpopulation exhibited mesenchymal properties, NRF2 target gene expression, and sensitivity to ferroptotic cell death. Exploiting this induced collateral sensitivity by GPX4 inhibition clears drug-tolerant populations and leads to tumor cell eradication. Overall, this experimental in vitro data and theoretical modeling demonstrate why targeted mono- and dual therapies will likely fail in sufficiently large cancer cell populations to limit long-term efficacy. Our approach is not tied to a particular driver mechanism and can be used to systematically assess and ideally exhaust the resistance landscape for different cancer types to rationally design combination therapies. SIGNIFICANCE: Unraveling the trajectories of preexisting resistant and drug-tolerant persister cells facilitates the rational design of multidrug combination or sequential therapies, presenting an approach to explore for treating EGFR-mutant lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction , ErbB Receptors/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Mutation
2.
Nat Commun ; 12(1): 5505, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535668

ABSTRACT

Kinase inhibitors suppress the growth of oncogene driven cancer but also enforce the selection of treatment resistant cells that are thought to promote tumor relapse in patients. Here, we report transcriptomic and functional genomics analyses of cells and tumors within their microenvironment across different genotypes that persist during kinase inhibitor treatment. We uncover a conserved, MAPK/IRF1-mediated inflammatory response in tumors that undergo stemness- and senescence-associated reprogramming. In these tumor cells, activation of the innate immunity sensor RIG-I via its agonist IVT4, triggers an interferon and a pro-apoptotic response that synergize with concomitant kinase inhibition. In humanized lung cancer xenografts and a syngeneic Egfr-driven lung cancer model these effects translate into reduction of exhausted CD8+ T cells and robust tumor shrinkage. Overall, the mechanistic understanding of MAPK/IRF1-mediated intratumoral reprogramming may ultimately prolong the efficacy of targeted drugs in genetically defined cancer patients.


Subject(s)
DEAD Box Protein 58/metabolism , Immunity, Innate , Inflammation/pathology , MAP Kinase Signaling System , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Immunologic/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cytokines/metabolism , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immune Evasion/drug effects , Immunity, Innate/drug effects , Interferon Regulatory Factor-1/metabolism , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred C57BL , Neoplasms/pathology , Oncogenes , Signal Transduction/drug effects
3.
Blood ; 133(16): 1766-1777, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30755419

ABSTRACT

In acute myeloid leukemia (AML), acquired genetic aberrations carry prognostic implications and guide therapeutic decisions. Clinical algorithms have been improved by the incorporation of novel aberrations. Here, we report the presence and functional characterization of mutations in the transcription factor NFE2 in patients with AML and in a patient with myelosarcoma. We previously described NFE2 mutations in patients with myeloproliferative neoplasms and demonstrated that expression of mutant NFE2 in mice causes a myeloproliferative phenotype. Now, we show that, during follow-up, 34% of these mice transform to leukemia presenting with or without concomitant myelosarcomas, or develop isolated myelosarcomas. These myelosarcomas and leukemias acquired AML-specific alterations, including the murine equivalent of trisomy 8, loss of the AML commonly deleted region on chromosome 5q, and mutations in the tumor suppressor Trp53 Our data show that mutations in NFE2 predispose to the acquisition of secondary changes promoting the development of myelosarcoma and/or AML.


Subject(s)
Cell Transformation, Neoplastic/genetics , Leukemia, Myeloid, Acute/genetics , NF-E2 Transcription Factor, p45 Subunit/genetics , NF-E2 Transcription Factor, p45 Subunit/metabolism , Sarcoma, Myeloid/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Chromosome Aberrations , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mice , Middle Aged , Mutation , Sarcoma, Myeloid/etiology , Tumor Suppressor Protein p53/genetics , Young Adult
4.
Lab Invest ; 96(3): 307-16, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26692290

ABSTRACT

We previously showed that histone deacetylase inhibitor (HDACi) and 5-azacytidine (AZA) treatment selectively induced cell death of esophageal cancer cells. The mechanisms of cancer selectivity, however, remained unclear. Here we examined whether the cancer selectivity of HDACi/AZA treatment is mediated by the thioredoxin (Trx) system and reactive oxygen species (ROS) in esophageal cancer cells. For this, we first analyzed human tissue specimens of 37 esophageal cancer patients by immunohistochemistry for Trx, Trx-interacting protein (TXNIP) and Trx reductase (TXNRD). This revealed a loss or at least reduction of nuclear Trx in esophageal cancer cells, compared with normal epithelial cells (P<0.001). Although no differences were observed for TXNIP, TXNRD was more frequently expressed in cancer cells (P<0.001). In the two main histotypes of esophageal squamous cell carcinomas (ESCCs, n=19) and esophageal adenomcarcinomas (EAC, n=16), similar Trx, TXNIP and TXNRD expression patterns were observed. Also in vitro, nuclear Trx was only detectable in non-neoplastic Het-1A cells, but not in OE21/ESCC or OE33/EAC cell lines. Moreover, the two cancer cell lines showed an increased Trx activity, being significant for OE21 (P=0.0237). After treatment with HDACi and/or AZA, ROS were exclusively increased in both cancer cell lines (P=0.048-0.017), with parallel decrease of Trx activity. This was variably accompanied by increased TXNIP levels upon AZA, MS-275 or MS-275/AZA treatment for 6 or 24 h in OE21, but not in Het-1A or OE33 cells. In summary, this study evaluated Trx and its associated proteins TXNIP and TXNRD for the first time in esophageal cancers. The analyses revealed an altered subcellular localization of Trx and strong upregulation of TXNRD in esophageal cancer cells. Moreover, HDACi and AZA disrupted Trx function and induced accumulation of ROS with subsequent apoptosis in esophageal cancer cells exclusively. Trx function is hence an important cellular mediator conferring non-neoplastic cell resistance for HDACi and/or AZA.


Subject(s)
Azacitidine/therapeutic use , Esophageal Neoplasms/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Thioredoxins/physiology , Adult , Aged , Aged, 80 and over , Carrier Proteins/physiology , Cell Line, Tumor , Epigenesis, Genetic , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Female , Humans , Male , Middle Aged , Reactive Oxygen Species/metabolism , Thioredoxin Reductase 1/physiology
5.
Epigenetics ; 10(5): 431-45, 2015.
Article in English | MEDLINE | ID: mdl-25923331

ABSTRACT

Esophageal cancers are highly aggressive tumors with poor prognosis despite some recent advances in surgical and radiochemotherapy treatment options. This study addressed the feasibility of drugs targeting epigenetic modifiers in esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) cells. We tested inhibition of histone deacetylases (HDACs) by SAHA, MS-275, and FK228, inhibition of DNA methyltransferases by Azacytidine (AZA) and Decitabine (DAC), and the effect of combination treatment using both types of drugs. The drug targets, HDAC1/2/3 and DNMT1, were expressed in normal esophageal epithelium and tumor cells of ESCC or EAC tissue specimens, as well as in non-neoplastic esophageal epithelial (Het-1A), ESCC (OE21, Kyse-270, Kyse-410), and EAC (OE33, SK-GT-4) cell lines. In vitro, HDAC activity, histone acetylation, and p21 expression were similarly affected in non-neoplastic, ESCC, and EAC cell lines post inhibitor treatment. Combined MS-275/AZA treatment, however, selectively targeted esophageal cancer cell lines by inducing DNA damage, cell viability loss, and apoptosis, and by decreasing cell migration. Non-neoplastic Het-1A cells were protected against HDACi (MS-275)/AZA treatment. RNA transcriptome analyses post MS-275 and/or AZA treatment identified novel regulated candidate genes (up: BCL6, Hes2; down: FAIM, MLKL), which were specifically associated with the treatment responses of esophageal cancer cells. In summary, combined HDACi/AZA treatment is efficient and selective for the targeting of esophageal cancer cells, despite similar target expression of normal and esophageal cancer epithelium, in vitro and in human esophageal carcinomas. The precise mechanisms of action of treatment responses involve novel candidate genes regulated by HDACi/AZA in esophageal cancer cells. Together, targeting of epigenetic modifiers in esophageal cancers may represent a potential future therapeutic approach.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Azacitidine/pharmacology , Carcinoma, Squamous Cell/drug therapy , Esophageal Neoplasms/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Acetylation/drug effects , Adenocarcinoma/metabolism , Apoptosis/drug effects , Azacitidine/analogs & derivatives , Benzamides/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Damage/drug effects , Decitabine , Depsipeptides/pharmacology , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma , Histones/metabolism , Humans , Hydroxamic Acids/pharmacology , Pyridines/pharmacology , Transcriptome/drug effects , Vorinostat
SELECTION OF CITATIONS
SEARCH DETAIL
...