Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
J Appl Clin Med Phys ; 23(3): e13522, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35001499

ABSTRACT

PURPOSE: Detector arrays and profile-scans have widely replaced film-measurements for quality assurance (QA) on linear accelerators. Film is still used for relative output factor (ROF) measurements, positioning, and dose-profile verification for annual Leksell Gamma Knife (LGK) QA. This study shows that small-field active detector measurements can be performed in the easily accessed clinical mode and that they are an effective replacement to time-consuming and exacting film measurements. METHODS: Beam profiles and positioning scans for 4-mm, 8-mm, and 16-mm-collimated fields were collected along the x-, y-, and z-axes. The Exradin W2-scintillator and the PTW microdiamond-detector were placed in custom inserts centered in the Elekta solid-water phantom for these scans. GafChromic EBT3-film was irradiated with single uniformly collimated exposures as the clinical-standard reference, using the same solid-water phantom for profile tests and the Elekta film holder for radiation focal point (RFP)/patient-positioning system (PPS) coincidence. All experimental data were compared to the tissue-maximum-ratio-based (TMR10) dose calculation. RESULTS: The detector-measured beam profiles and film-based profiles showed excellent agreement with TMR10-predicted full-width, half-maximum (FWHM) values. Absolute differences between the measured FWHM and FWHM from the treatment-planning system were on average 0.13 mm, 0.08 mm, and 0.04 mm for film, microdiamond, and scintillator, respectively. The coincidence between the RFP and the PPS was measured to be ≤0.5 mm with microdiamond, ≤0.41 mm with the W2-1 × 1 scintillator, and ≤0.22 mm using the film-technique. CONCLUSIONS: Small-volume field detectors, used in conjunction with a clinically available phantom, an electrometer with data-logging, and treatment plans created in clinical mode offer an efficient and viable alternative for film-based profile tests. Position verification can be accurately performed when CBCT-imaging is available to correct for residual detector-position uncertainty. Scans are easily set up within the treatment-planning-system and, when coupled with an automated analysis, can provide accurate measurements within minutes.


Subject(s)
Particle Accelerators , Radiosurgery , Humans , Phantoms, Imaging , Radiometry , Radionuclide Imaging , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...