Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Invertebr Pathol ; 146: 24-30, 2017 06.
Article in English | MEDLINE | ID: mdl-28400199

ABSTRACT

We examined whether alfalfa leafcutting bees (ALCB, Megachille rotundata) experienced a higher incidence of seven viruses commonly found honey bees (Apis mellifera) when placed alongside honey bees for hybrid canola seed pollination. Although two viruses - sacbrood virus (SBV) and deformed wing virus (DWV) - were detected in ALCB adults, their presence appeared independent of whether honey bees were present in the same field or not. A further survey of viruses among ALCB adults in three different alfalfa seed growing regions in Western Canada confirmed the ubiquity of sacbrood virus (SBV) as well as the infrequent presence of acute bee paralysis virus (ABPV), both of which had not been previously reported on ALCB. Moreover, SBV and ABPV were detected in the cocoon stage and only in one region. Co-infection among pools of ALCB adults with both of these viruses was more closely correlated with decreasing levels of cocoon viability than infection levels in cocoons themselves. This research suggests ongoing viral transmission between honey bees and ALCB in the same fields is likely low but that co-infection with these viruses may lower ALCB productivity.


Subject(s)
Bees/virology , Insect Viruses/pathogenicity , Animals , Canada , Insect Viruses/classification , Insect Viruses/isolation & purification , Species Specificity
2.
J Econ Entomol ; 97(5): 1500-8, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15568335

ABSTRACT

The interaction between the effects of varroa, Varroa destructor Anderson & Trueman, and formic acid treatments on colonies of honey bees, Apis mellifera L., were examined in two field experiments. In experiment 1, colonies with low varroa levels were exposed to two different slow-release formulations and compared with untreated colonies. In experiment 2, colonies inoculated with varroa and uninoculated colonies were exposed to a slow-release formulation, a pour-on formulation, or were left untreated. The effects of treatments, hive temperature, and hive relative humidity on formic acid concentration in hive air also were examined. Slow-release formic acid application improved colony development in colonies that had been inoculated with varroa. However, in uninoculated colonies where the mean abundance of varroa was low, slow-release formic acid application suppressed colony development. The pour-on application did not have a negative impact on worker population growth in uninoculated colonies, but also it was not as effective as the slow-release treatment in improving population growth in varroa-inoculated colonies. Equivalent volumes of acid applied in pour-on and slow-release formulations provided the same cumulative dose in hive air but differed in the daily pattern of formic acid release. Colonies that were not inoculated with varroa had higher concentrations of formic acid in hive air than colonies that were inoculated with varroa on three of the five pour-on application dates. The data suggest that reductions in worker population and/or activity caused by varroa can interact with ambient conditions to affect the volatilization or sorption of formic acid in the hive.


Subject(s)
Bees/drug effects , Bees/parasitology , Formates/pharmacology , Insecticides/pharmacology , Animals , Bees/metabolism , Delayed-Action Preparations , Environment , Formates/administration & dosage , Formates/metabolism , Insecticides/administration & dosage , Insecticides/metabolism , Mites/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...