Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(10): 8141-8160, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38728572

ABSTRACT

Human interleukin-1ß (IL-1ß) is a pro-inflammatory cytokine that plays a critical role in the regulation of the immune response and the development of various inflammatory diseases. In this publication, we disclose our efforts toward the discovery of IL-1ß binders that interfere with IL-1ß signaling. To this end, several technologies were used in parallel, including fragment-based screening (FBS), DNA-encoded library (DEL) technology, peptide discovery platform (PDP), and virtual screening. The utilization of distinct technologies resulted in the identification of new chemical entities exploiting three different sites on IL-1ß, all of them also inhibiting the interaction with the IL-1R1 receptor. Moreover, we identified lysine 103 of IL-1ß as a target residue suitable for the development of covalent, low-molecular-weight IL-1ß antagonists.


Subject(s)
Interleukin-1beta , Humans , Drug Discovery , Interleukin-1beta/metabolism , Ligands , Receptors, Interleukin-1 Type I/metabolism , Receptors, Interleukin-1 Type I/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , DNA/chemistry , Gene Library
2.
Nat Commun ; 14(1): 5497, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679328

ABSTRACT

Human interleukin-1ß (hIL-1ß) is a pro-inflammatory cytokine involved in many diseases. While hIL-1ß directed antibodies have shown clinical benefit, an orally available low-molecular weight antagonist is still elusive, limiting the applications of hIL-1ß-directed therapies. Here we describe the discovery of a low-molecular weight hIL-1ß antagonist that blocks the interaction with the IL-1R1 receptor. Starting from a low affinity fragment-based screening hit 1, structure-based optimization resulted in a compound (S)-2 that binds and antagonizes hIL-1ß with single-digit micromolar activity in biophysical, biochemical, and cellular assays. X-ray analysis reveals an allosteric mode of action that involves a hitherto unknown binding site in hIL-1ß encompassing two loops involved in hIL-1R1/hIL-1ß interactions. We show that residues of this binding site are part of a conformationally excited state of the mature cytokine. The compound antagonizes hIL-1ß function in cells, including primary human fibroblasts, demonstrating the relevance of this discovery for future development of hIL-1ß directed therapeutics.


Subject(s)
Cytokines , Thinness , Humans , Interleukin-1beta , Molecular Weight , Binding Sites , Biophysics
3.
J Med Chem ; 63(11): 5697-5722, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32073845

ABSTRACT

The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several human diseases including age-related macular degeneration, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and various glomerular diseases. The serine protease factor B (FB) is a key node in the AP and is integral to the formation of C3 and C5 convertase. Despite the prominent role of FB in the AP, selective orally bioavailable inhibitors, beyond our own efforts, have not been reported previously. Herein we describe in more detail our efforts to identify FB inhibitors by high-throughput screening (HTS) and leveraging insights from several X-ray cocrystal structures during optimization efforts. This work culminated in the discovery of LNP023 (41), which is currently being evaluated clinically in several diverse AP mediated indications.


Subject(s)
Benzoic Acid/chemistry , Complement Factor B/antagonists & inhibitors , Indoles/chemistry , Atypical Hemolytic Uremic Syndrome/metabolism , Atypical Hemolytic Uremic Syndrome/pathology , Benzoic Acid/metabolism , Benzoic Acid/pharmacokinetics , Binding Sites , Catalytic Domain , Complement Factor B/metabolism , Crystallography, X-Ray , Drug Evaluation, Preclinical , Half-Life , Humans , Indoles/metabolism , Indoles/pharmacokinetics , Inhibitory Concentration 50 , Macular Degeneration/metabolism , Macular Degeneration/pathology , Molecular Dynamics Simulation , Structure-Activity Relationship
4.
Angew Chem Int Ed Engl ; 56(5): 1294-1297, 2017 01 24.
Article in English | MEDLINE | ID: mdl-27981705

ABSTRACT

CSN5 is the zinc metalloprotease subunit of the COP9 signalosome (CSN), which is an important regulator of cullin-RING E3 ubiquitin ligases (CRLs). CSN5 is responsible for the cleavage of NEDD8 from CRLs, and blocking deconjugation of NEDD8 traps the CRLs in a hyperactive state, thereby leading to auto-ubiquitination and ultimately degradation of the substrate recognition subunits. Herein, we describe the discovery of azaindoles as a new class of CSN5 inhibitors, which interact with the active-site zinc ion of CSN5 through an unprecedented binding mode. The best compounds inhibited CSN5 with nanomolar potency, led to degradation of the substrate recognition subunit Skp2 in cells, and reduced the viability of HCT116 cells.


Subject(s)
COP9 Signalosome Complex/antagonists & inhibitors , Indoles/metabolism , Zinc/metabolism , Binding Sites , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , Catalytic Domain , Cell Proliferation/drug effects , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , HCT116 Cells , Humans , Indoles/chemistry , Indoles/pharmacology , Molecular Docking Simulation , NEDD8 Protein/chemistry , NEDD8 Protein/metabolism , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Interference , RNA, Small Interfering/metabolism , S-Phase Kinase-Associated Proteins/chemistry , S-Phase Kinase-Associated Proteins/metabolism , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...