Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Agric Food Chem ; 72(8): 4225-4236, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38354215

ABSTRACT

GH 62 arabinofuranosidases are known for their excellent specificity for arabinoxylan of agroindustrial residues and their synergism with endoxylanases and other hemicellulases. However, the low thermostability of some GH enzymes hampers potential industrial applications. Protein engineering research highly desires mutations that can enhance thermostability. Therefore, we employed directed evolution using one round of error-prone PCR and site-saturation mutagenesis for thermostability enhancement of GH 62 arabinofuranosidase from Aspergillus fumigatus. Single mutants with enhanced thermostability showed significant ΔΔG changes (<-2.5 kcal/mol) and improvements in perplexity scores from evolutionary scale modeling inverse folding. The best mutant, G205K, increased the melting temperature by 5 °C and the energy of denaturation by 41.3%. We discussed the functional mechanisms for improved stability. Analyzing the adjustments in α-helices, ß-sheets, and loops resulting from point mutations, we have obtained significant knowledge regarding the potential impacts on protein stability, folding, and overall structural integrity.


Subject(s)
Glycoside Hydrolases , Protein Engineering , Enzyme Stability , Temperature , Mutagenesis
2.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36848192

ABSTRACT

How protein properties such as protein activity and protein essentiality affect the distribution of fitness effects (DFE) of mutations are important questions in protein evolution. Deep mutational scanning studies typically measure the effects of a comprehensive set of mutations on either protein activity or fitness. Our understanding of the underpinnings of the DFE would be enhanced by a comprehensive study of both for the same gene. Here, we compared the fitness effects and in vivo protein activity effects of ∼4,500 missense mutations in the E. coli rnc gene. This gene encodes RNase III, a global regulator enzyme that cleaves diverse RNA substrates including precursor ribosomal RNA and various mRNAs including its own 5' untranslated region (5'UTR). We find that RNase III's ability to cleave dsRNA is the most important determinant of the fitness effects of rnc mutations. The DFE of RNase III was bimodal, with mutations centered around neutral and deleterious effects, consistent with previously reported DFE's of enzymes with a singular physiological role. Fitness was buffered to small effects on RNase III activity. The enzyme's RNase III domain, which contains the RNase III signature motif and all active site residues, was more sensitive to mutation than its dsRNA binding domain, which is responsible for recognition and binding to dsRNA. Differential effects on fitness and functional scores for mutations at highly conserved residues G97, G99, and F188 suggest that these positions may be important for RNase III cleavage specificity.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Ribonuclease III/genetics , Escherichia coli Proteins/genetics , Mutation
3.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36798991

ABSTRACT

Mutations can have deleterious fitness effects when they decrease protein specific activity or decrease active protein abundance. Mutations will also be deleterious when they cause misfolding or misinteractions that are toxic to the cell (i.e., independent of whether the mutations affect specific activity and abundance). The extent to which protein evolution is shaped by these and other collateral fitness effects is unclear in part because little is known of their frequency and magnitude. Using deep mutational scanning (DMS), we previously found at least 42% of missense mutations in the TEM-1 ß-lactamase antibiotic resistance gene cause deleterious collateral fitness effects. Here, we used DMS to comprehensively determine the collateral fitness effects of missense mutations in three genes encoding the antibiotic resistance proteins New Delhi metallo-ß-lactamase (NDM-1), chloramphenicol acetyltransferase I (CAT-I), and 2″-aminoglycoside nucleotidyltransferase (AadB). AadB (20%), CAT-I (0.9%), and NDM-1 (0.2%) were less susceptible to deleterious collateral fitness effects than TEM-1 (42%) indicating that genes have different propensities for these effects. As was observed with TEM-1, all the studied deleterious aadB mutants increased aggregation. However, aggregation did not correlate with collateral fitness effects for many of the deleterious mutants of CAT-I and NDM-1. Select deleterious mutants caused unexpected phenotypes to emerge. The introduction of internal start codons in CAT-1 caused loss of the episome and a mutation in aadB made its cognate antibiotic essential for growth. Our study illustrates how the complexity of the cell provides a rich environment for collateral fitness effects and new phenotypes to emerge.


Subject(s)
Mutation, Missense , beta-Lactamases , Mutation , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Proteins/genetics , Drug Resistance, Microbial
4.
CRISPR J ; 6(1): 43-51, 2023 02.
Article in English | MEDLINE | ID: mdl-36493370

ABSTRACT

Ribonuclease III (RNase III) and RNase III-like ribonucleases have a wide range of important functions and are found in all organisms, yet a simple and high-throughput in vivo method for measuring RNase III activity does not exist. Typical methods for measuring RNase III activity rely on in vitro RNA analysis or in vivo methods that are not suitable for high-throughput analysis. In this study, we describe our development of a deactivated Cas9 (dCas9)-based in vivo assay for RNase III activity that utilizes RNase III's cleavage of the 5'-untranslated region (UTR) of its own messenger RNA. The key molecule in the system is a hybrid guide RNA (gRNA) between the 5'-UTR of RNase III and gGFP, a gRNA that works with dCas9 to repress GFP expression. This fusion must be cleaved by RNase III for full GFP repression. Our system uses GFP fluorescence to report on Escherichia coli RNase III activity in culture and on an individual cell basis, making it effective for selecting individual cells through fluorescence-activated cell sorting. Homology between enzymes within the RNase III family suggests this assay might be adapted to measure the activity of other enzymes in the RNase III family such as human Dicer or Drosha.


Subject(s)
Escherichia coli , Ribonuclease III , Humans , Escherichia coli/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism , CRISPR-Cas Systems/genetics , Gene Editing , RNA
5.
PLoS One ; 17(6): e0269270, 2022.
Article in English | MEDLINE | ID: mdl-35657952

ABSTRACT

The engineering of switchable or activatable dCas9 proteins would benefit from a single system for both positive and negative selection of dCas9 activity. Most systems that are used to interrogate dCas9 libraries use a fluorescent protein screen or an antibiotic selection for active dCas9 variants. To avoid some of the limitations of these systems, we have developed a single system capable of selecting for either active or inactive dCas9 variants. E. coli expressing active dCas9 variants are isolated in the positive selection system through growth in the presence of ampicillin. The negative selection can isolate cells lacking dCas9 activity through two separate mechanisms: growth in M9 minimal media or growth in media containing streptomycin. This system is capable of enriching for rare dCas9 variants up to 9,000-fold and possesses potential utility in directed evolution experiments to create switchable dCas9 proteins.


Subject(s)
CRISPR-Cas Systems , Escherichia coli , Escherichia coli/genetics
6.
Biochem Soc Trans ; 48(5): 2205-2212, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33079167

ABSTRACT

There is an ongoing need in the synthetic biology community for novel ways to regulate gene expression. Protein switches, which sense biological inputs and respond with functional outputs, represent one way to meet this need. Despite the fact that there is already a large pool of transcription factors and signaling proteins available, the pool of existing switches lacks the substrate specificities and activities required for certain applications. Therefore, a large number of techniques have been applied to engineer switches with novel properties. Here we discuss some of these techniques by broadly organizing them into three approaches. We show how novel switches can be created through mutagenesis, domain swapping, or domain insertion. We then briefly discuss their use as biosensors and in complex genetic circuits.


Subject(s)
Gene Expression Regulation , Protein Engineering/methods , Allosteric Site , Animals , Biochemical Phenomena , Biosensing Techniques/methods , DNA/chemistry , Dimerization , Gene Expression , Gene Regulatory Networks , Genetic Engineering , Humans , Mice , Mutagenesis , Mutation , Protein Domains , Proteins/genetics , Signal Transduction , Substrate Specificity , Synthetic Biology , Transcription Factors/metabolism
7.
Methods Enzymol ; 643: 203-224, 2020.
Article in English | MEDLINE | ID: mdl-32896282

ABSTRACT

Knowledge of the distribution of fitness effects (DFE) of mutations is critical to the understanding of protein evolution. Here, we describe methods for large-scale, systematic measurements of the DFE using growth competition and deep mutational scanning. We discuss techniques for producing comprehensive libraries of gene variants as well as provide necessary considerations for designing these experiments. Using these methods, we have constructed libraries containing over 18,000 variants, measured fitness effects of these mutations by deep mutational scanning, and verified the presence of fitness effects in individual variants. Our methods provide a high-throughput protocol for measuring biological fitness effects of mutations and the dependence of fitness effects on the environment.


Subject(s)
Models, Genetic , Mutation
8.
Cancer Biol Ther ; 21(10): 946-953, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32997949

ABSTRACT

Suicide gene therapy using gene-directed enzyme prodrug therapy (GDEPT) is based on delivering a gene-encoded enzyme to cells that converts a nontoxic prodrug into its toxic metabolite. The bystander effect is thought to compensate for inefficiencies in delivery and expression because the produced toxic metabolite can spread to adjacent non-expressing cells.The purpose of this study was to assess the significance of bystander effect in GDEPT over the long term in vivo.We performed experiments using mixtures of yeast cytosine deaminase (yCD) expressing and empty vector (EV) containing cells. First, the bystander effect was assessed in various ratios of colon cancer cell lines RKO with yCD/EV in 2D and 3D culture. Next, tumors raised from RKO with yCD/EV in mice were treated with the prodrug 5-fluorocytosine (5-FC) for 42 days to assess bystander effect in vivo. Cell types constituting relapsed tumors were determined by 5-FC treatment and PCR.We were able to demonstrate bystander effect in both 2D and 3D. In mice, tumors initially regressed, but they all eventually recurred including those produced from 80% yCD expressing cells. Cells explanted from the recurrent tumors demonstrated that suicide gene expressing cells had been selected against during in vivo treatment with 5-FC.We conclude that gene therapy of malignant tumors in patients using the yCD/5-FC system will require targeting well over 80% of the malignant cells, and therefore will likely require improved bystander effect or repeated treatment.


Subject(s)
Genetic Therapy/methods , Animals , Female , Humans , Mice , Mice, Nude , Single-Cell Analysis
9.
Proc Natl Acad Sci U S A ; 117(21): 11597-11607, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32385156

ABSTRACT

The distribution of fitness effects of mutation plays a central role in constraining protein evolution. The underlying mechanisms by which mutations lead to fitness effects are typically attributed to changes in protein specific activity or abundance. Here, we reveal the importance of a mutation's collateral fitness effects, which we define as effects that do not derive from changes in the protein's ability to perform its physiological function. We comprehensively measured the collateral fitness effects of missense mutations in the Escherichia coli TEM-1 ß-lactamase antibiotic resistance gene using growth competition experiments in the absence of antibiotic. At least 42% of missense mutations in TEM-1 were deleterious, indicating that for some proteins collateral fitness effects occur as frequently as effects on protein activity and abundance. Deleterious mutations caused improper posttranslational processing, incorrect disulfide-bond formation, protein aggregation, changes in gene expression, and pleiotropic effects on cell phenotype. Deleterious collateral fitness effects occurred more frequently in TEM-1 than deleterious effects on antibiotic resistance in environments with low concentrations of the antibiotic. The surprising prevalence of deleterious collateral fitness effects suggests they may play a role in constraining protein evolution, particularly for highly expressed proteins, for proteins under intermittent selection for their physiological function, and for proteins whose contribution to fitness is buffered against deleterious effects on protein activity and protein abundance.


Subject(s)
Evolution, Molecular , Genetic Fitness/genetics , Mutation, Missense/genetics , Mutation, Missense/physiology , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism
10.
mBio ; 10(2)2019 04 30.
Article in English | MEDLINE | ID: mdl-31040248

ABSTRACT

In filamentous fungi, an important kinase responsible for adaptation to changes in available nutrients is cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]). This kinase has been well characterized at a molecular level, but its systemic action and direct/indirect targets are generally not well understood in filamentous fungi. In this work, we used a pkaA deletion strain (ΔpkaA) to identify Aspergillus nidulans proteins for which phosphorylation is dependent (either directly or indirectly) on PKA. A combination of phosphoproteomic and transcriptomic analyses revealed both direct and indirect targets of PKA and provided a global perspective on its function. One of these targets was the transcription factor CreA, the main repressor responsible for carbon catabolite repression (CCR). In the ΔpkaA strain, we identified a previously unreported phosphosite in CreA, S319, which (based on motif analysis) appears to be a direct target of Stk22 kinase (AN5728). Upon replacement of CreA S319 with an alanine (i.e., phosphonull mutant), the dynamics of CreA import to the nucleus are affected. Collectively, this work provides a global overview of PKA function while also providing novel insight regarding significance of a specific PKA-mediated phosphorylation event.IMPORTANCE The cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling pathway is well conserved across eukaryotes, and previous work has shown that it plays an important role in regulating development, growth, and virulence in a number of fungi. PKA is activated in response to extracellular nutrients and acts to regulate metabolism and growth. While a number of components in the PKA pathway have been defined in filamentous fungi, current understanding does not provide a global perspective on PKA function. Thus, this work is significant in that it comprehensively identifies proteins and functional pathways regulated by PKA in a model filamentous fungus. This information enhances our understanding of PKA action and may provide information on how to manipulate it for specific purposes.


Subject(s)
Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Bacterial , Phosphoproteins/analysis , Protein Processing, Post-Translational , Repressor Proteins/metabolism , Aspergillus nidulans/chemistry , Fungal Proteins/genetics , Gene Deletion , Gene Expression Profiling , Proteome/analysis , Repressor Proteins/genetics
11.
ACS Synth Biol ; 8(5): 948-954, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30998310

ABSTRACT

One limitation of gene-directed enzyme prodrug therapy (GDEPT) is the difficulty in selectively and efficiently transducing cancer cells with the gene encoding a prodrug-converting enzyme. To circumvent this issue, we sought to move the selectivity from the gene delivery level to the protein level. We developed fusion proteins of the prodrug-activating enzyme yeast cytosine deaminase (yCD) and the oxygen-dependent degradation domain (ODDD) of HIF-1α, a domain that regulates the accumulation of HIF-1α in an oxygen-dependent manner. We called these HOPE fusions for HIF1-α Oxygen-dependent degradation domain/Prodrug-converting Enzyme. The HOPE fusions were designed to selectively accumulate in cells experiencing hypoxia and thus selectively cause conversion of the prodrug 5-fluorocytosine (5-FC) to the chemotherapeutic 5-fluorouracil (5-FU) where oxygen levels are low (e.g., at the center of a tumor). Consistent with our hypothesis, HT1080 fibrosarcoma cells transduced with HOPE fusion genes exhibited increased fusion protein accumulation and increased sensitization to 5-FC in mock-hypoxia.


Subject(s)
Cell Hypoxia , Cytosine Deaminase/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/enzymology , Cell Line, Tumor , Cell Survival/drug effects , Cobalt/toxicity , Fluorouracil/pharmacology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Plasmids/genetics , Plasmids/metabolism , Protein Domains/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
12.
J Mol Biol ; 431(12): 2320-2330, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31034887

ABSTRACT

Short insertions and deletions (InDels) are a common type of mutation found in nature and a useful source of variation in protein engineering. InDel events have important consequences in protein evolution, often opening new pathways for adaptation. However, much less is known about the effects of InDels compared to point mutations and amino acid substitutions. In particular, deep mutagenesis studies on the distribution of fitness effects of mutations have focused almost exclusively on amino acid substitutions. Here, we present a near-comprehensive analysis of the fitness effects of single amino acid InDels in TEM-1 ß-lactamase. While we found InDels to be largely deleterious, partially overlapping deletion-tolerant and insertion-tolerant regions were observed throughout the protein, especially in unstructured regions and at the end of helices. The signal sequence of TEM-1 tolerated InDels more than the mature protein. Most regions of the protein tolerated insertions more than deletions, but a few regions tolerated deletions more than insertions. We examined the relationship between InDel tolerance and a variety of measures to help understand its origin. These measures included evolutionary variation in ß-lactamases, secondary structure identity, tolerance to amino acid substitutions, solvent accessibility, and side-chain weighted contact number. We found secondary structure, weighted contact number, and evolutionary variation in class A beta-lactamases to be the somewhat predictive of InDel fitness effects.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , INDEL Mutation , beta-Lactamases/genetics , Amino Acid Substitution , Drug Resistance, Bacterial , Escherichia coli/chemistry , Escherichia coli Infections/microbiology , Escherichia coli Proteins/chemistry , Humans , Models, Molecular , Protein Conformation , beta-Lactamases/chemistry
13.
J Mol Biol ; 431(10): 1981-1992, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30922874

ABSTRACT

Interactions between mutations play a central role in shaping the fitness landscape, but a clear picture of intragenic epistasis has yet to emerge. To further reveal the prevalence and patterns of intragenic epistasis, we present a survey of epistatic interactions between sequential mutations in TEM-1 ß-lactamase. We measured the fitness effect of ~12,000 pairs of consecutive amino acid substitutions and used our previous study of the fitness effects of single amino acid substitutions to calculate epistasis for over 8000 mutation pairs. Since sequential mutations are prone to physically interact, we postulated that our study would be surveying specific epistasis instead of nonspecific epistasis. We found widespread negative epistasis, especially in beta-strands, and a high frequency of negative sign epistasis among individually beneficial mutations. Negative epistasis (52%) occurred 7.6 times as frequently as positive epistasis (6.8%). Buried residues experienced more negative epistasis that surface-exposed residues. However, TEM-1 exhibited a couple of hotspots for positive epistasis, most notably L221/ R222 at which many combinations of mutations positively interacted. This study is the first to systematically examine pairwise epistasis throughout an entire protein performing its native function in its native host.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , beta-Lactamases/genetics , Amino Acid Substitution , Epistasis, Genetic , Escherichia coli/chemistry , Escherichia coli Infections/microbiology , Escherichia coli Proteins/chemistry , Evolution, Molecular , Genetic Fitness , Humans , Models, Molecular , Mutation , Protein Conformation , beta-Lactamases/chemistry
14.
PLoS One ; 13(12): e0209408, 2018.
Article in English | MEDLINE | ID: mdl-30562388

ABSTRACT

Mammalian gene expression is a complex process regulated in part by CpG methylation. The ability to target methylation for de novo gene regulation could have therapeutic and research applications. We have previously developed a dCas9-MC/MN protein for targeting CpG methylation. dCas9-MC/MN is composed of an artificially split M.SssI methyltransferase (MC/MN), with the MC fragment fused to a nuclease-null CRISPR/Cas9 (dCas9). Guide RNAs directed dCas9-MC/MN to methylate target sites in E. coli and human cells but also caused some low-level off-target methylation. Here, in E. coli, we show that shortening the dCas9-MC linker increases methylation of CpG sites located at select distances from the dCas9 binding site. Although a shortened linker decreased methylation of other CpGs proximal to the target site, it did not reduce off-target methylation of more distant CpG sites. Instead, targeted mutagenesis of the methyltransferase's DNA binding domain, designed to reduce DNA affinity, significantly and preferentially reduced methylation of such sites.


Subject(s)
CRISPR-Cas Systems/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Gene Editing/methods , Protein Engineering/methods , Recombinant Fusion Proteins/genetics , Binding Sites/genetics , CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Escherichia coli , Mutagenesis/genetics , Protein Interaction Domains and Motifs/genetics , RNA, Guide, Kinetoplastida/genetics , Recombinant Fusion Proteins/metabolism
15.
Sci Rep ; 7(1): 6732, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28751638

ABSTRACT

Mammalian genomes exhibit complex patterns of gene expression regulated, in part, by DNA methylation. The advent of engineered DNA methyltransferases (MTases) to target DNA methylation to specific sites in the genome will accelerate many areas of biological research. However, targeted MTases require clear design rules to direct site-specific DNA methylation and minimize the unintended effects of off-target DNA methylation. Here we report a targeted MTase composed of an artificially split CpG MTase (sMTase) with one fragment fused to a catalytically-inactive Cas9 (dCas9) that directs the functional assembly of sMTase fragments at the targeted CpG site. We precisely map RNA-programmed DNA methylation to targeted CpG sites as a function of distance and orientation from the protospacer adjacent motif (PAM). Expression of the dCas9-sMTase in mammalian cells led to predictable and efficient (up to ~70%) DNA methylation at targeted sites. Multiplexing sgRNAs enabled targeting methylation to multiple sites in a single promoter and to multiple sites in multiple promoters. This programmable de novo MTase tool might be used for studying mechanisms of initiation, spreading and inheritance of DNA methylation, and for therapeutic gene silencing.


Subject(s)
CRISPR-Associated Protein 9/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Gene Editing/methods , Protein Engineering/methods , RNA, Guide, Kinetoplastida/genetics , Base Sequence , Binding Sites , CRISPR-Associated Protein 9/metabolism , CpG Islands , DNA (Cytosine-5-)-Methyltransferases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Kinetics , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Guide, Kinetoplastida/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Substrate Specificity
16.
Methods Mol Biol ; 1596: 43-55, 2017.
Article in English | MEDLINE | ID: mdl-28293879

ABSTRACT

A protein switch is a protein that changes between inactive ("off") and active ("on") states in response to a biomolecule or physical signal. These switches can be created by fusing two domains in such a way that the activity of the output domain is regulated by the input domain's recognition of an input signal (such as the binding of a molecule, recognition of light). Here, we describe several methods for randomly fusing two domains to create domain insertion libraries from which protein switches can be identified by selections and/or screens.


Subject(s)
Protein Domains/genetics , Proteins/genetics , Genetic Techniques , Protein Engineering/methods
17.
Protein Eng Des Sel ; 30(2): 95-103, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27986921

ABSTRACT

Discovery of new cancer biomarkers and advances in targeted gene delivery mechanisms have made gene-directed enzyme prodrug therapy (GDEPT) an attractive method for treating cancer. Recent focus has been placed on increasing target specificity of gene delivery systems and reducing toxicity in non-cancer cells in order to make GDEPT viable. To help address this challenge, we have developed an enzymatic switch that confers higher prodrug toxicity in the presence of a cancer marker. The enzymatic switch was derived from the herpes simplex virus thymidine kinase (HSV-TK) fused to the CH1 domain of the p300 protein. The CH1 domain binds to the C-terminal transactivation domain (C-TAD) of the cancer marker hypoxia inducible factor 1α. The switch was developed using a directed evolution approach that evaluated a large library of HSV-TK/CH1 fusions using a negative selection for azidothymidine (AZT) toxicity and a positive selection for dT phosphorylation. The identified switch, dubbed TICKLE (Trigger-Induced Cell-Killing Lethal-Enzyme), confers a 4-fold increase in AZT toxicity in the presence of C-TAD. The broad substrate specificity exhibited by HSV-TK makes TICKLE an appealing prospect for testing in medical imaging and cancer therapy, while establishing a foundation for further engineering of nucleoside kinase protein switches.


Subject(s)
Biomarkers, Tumor/metabolism , Simplexvirus/enzymology , Thymidine Kinase/metabolism , Enzyme Activation , Gene Library , Phosphorylation/drug effects , Prodrugs/metabolism , Protein Domains , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Simplexvirus/drug effects , Simplexvirus/metabolism , Thymidine/metabolism , Thymidine Kinase/chemistry , Thymidine Kinase/genetics , Zidovudine/pharmacology
18.
Nucleic Acids Res ; 44(21): 10515-10525, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27915294

ABSTRACT

Quorum sensing (QS) regulates many natural phenotypes (e.q. virulence, biofilm formation, antibiotic resistance), and its components, when incorporated into synthetic genetic circuits, enable user-directed phenotypes. We created a library of Escherichia coli lsr operon promoters using error-prone PCR (ePCR) and selected for promoters that provided E. coli with higher tetracycline resistance over the native promoter when placed upstream of the tet(C) gene. Among the fourteen clones identified, we found several mutations in the binding sites of QS repressor, LsrR. Using site-directed mutagenesis we restored all p-lsrR-box sites to the native sequence in order to maintain LsrR repression of the promoter, preserving the other mutations for analysis. Two promoter variants, EP01rec and EP14rec, were discovered exhibiting enhanced protein expression. In turn, these variants retained their ability to exhibit the LsrR-mediated QS switching activity. Their sequences suggest regulatory linkage between CytR (CRP repressor) and LsrR. These promoters improve upon the native system and exhibit advantages over synthetic QS promoters previously reported. Incorporation of these promoters will facilitate future applications of QS-regulation in synthetic biology and metabolic engineering.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/physiology , Evolution, Molecular , Operon , Quorum Sensing/genetics , Base Sequence , Binding Sites , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Mutation , Nucleotide Motifs , Promoter Regions, Genetic , Protein Binding , Response Elements , Synthetic Biology , Transcription, Genetic
19.
PLoS One ; 11(9): e0162921, 2016.
Article in English | MEDLINE | ID: mdl-27677184

ABSTRACT

Engineering heterologous nucleoside kinases inside E. coli is a difficult process due to the integral role nucleosides play in cell division and transcription. Nucleoside analogs are used in many kinase screens that depend on cellular metabolization of the analogs. However, metabolic activation of these analogs can be toxic through disruptions of DNA replication and transcription because of the analogs' structural similarities to native nucleosides. Furthermore, the activity of engineered kinases can be masked by endogenous kinases in the cytoplasm, which leads to more difficulties in assessing target activity. A positive selection method that can discern a heterologous kinases' enzymatic activity without significantly influencing the cell's normal metabolic systems would be beneficial. We have developed a means to select for a nucleoside kinase's activity by transporting the kinase to the periplasmic space of an E. coli strain that has its PhoA alkaline phosphatase knocked out. Our proof-of-principle studies demonstrate that the herpes simplex virus thymidine kinase (HSV-TK) can be transported to the periplasmic space in functional form by attaching a tat-signal sequence to the N-terminus of the protein. HSV-TK phosphorylates the toxic nucleoside analog 3'-azido-3'-deoxythymidine (AZT), and this charged, monophosphate form of AZT cannot cross the inner membrane. The translocation of HSV-TK provides significant resistance to AZT when compared to bacteria lacking a periplasmic HSV-TK. However, resistance decreased dramatically above 40 µg/ml AZT. We propose that this threshold can be used to select for higher activity variants of HSV-TK and other nucleoside kinases in a manner that overcomes the efficiency and localization issues of previous selection schemes. Furthermore, our selection strategy should be a general strategy to select or evaluate nucleoside kinases that phosphorylate nucleosides such as prodrugs that would otherwise be toxic to E. coli.

20.
Biotechnol Biofuels ; 9: 119, 2016.
Article in English | MEDLINE | ID: mdl-27274356

ABSTRACT

BACKGROUND: Saccharification of lignocellulosic material by xylanases and other glycoside hydrolases is generally conducted at high concentrations of the final reaction products, which frequently inhibit the enzymes used in the saccharification process. Using a random nonhomologous recombination strategy, we have fused the GH11 xylanase from Bacillus subtilis (XynA) with the xylose binding protein from Escherichia coli (XBP) to produce an enzyme that is allosterically stimulated by xylose. RESULTS: The pT7T3GFP_XBP plasmid containing the XBP coding sequence was randomly linearized with DNase I, and ligated with the XynA coding sequence to create a random XynA-XBP insertion library, which was used to transform E. coli strain JW3538-1 lacking the XBP gene. Screening for active XBP was based on the expression of GFP from the pT7T3GFP_XBP plasmid under the control of a xylose inducible promoter. In the presence of xylose, cells harboring a functional XBP domain in the fusion protein (XBP+) showed increased GFP fluorescence and were selected using FACS. The XBP+ cells were further screened for xylanase activity by halo formation around xylanase producing colonies (XynA+) on LB-agar-xylan media after staining with Congo red. The xylanase activity ratio with xylose/without xylose in supernatants from the XBP+/XynA+ clones was measured against remazol brilliant blue xylan. A clone showing an activity ratio higher than 1.3 was selected where the XynA was inserted after the asparagine 271 in the XBP, and this chimera was denominated as XynA-XBP271. The XynA-XBP271 was more stable than XynA at 55 °C, and in the presence of xylose the catalytic efficiency was ~3-fold greater than the parental xylanase. Molecular dynamics simulations predicted the formation of an extended protein-protein interface with coupled movements between the XynA and XBP domains. In the XynA-XBP271 with xylose bound to the XBP domain, the mobility of a ß-loop in the XynA domain results in an increased access to the active site, and may explain the observed allosteric activation. CONCLUSIONS: The approach presented here provides an important advance for the engineering enzymes that are stimulated by the final product.

SELECTION OF CITATIONS
SEARCH DETAIL
...