Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 31(20): 4584-4595.e4, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34478646

ABSTRACT

In the developing central nervous system, electrical signaling is thought to rely exclusively on differentiating neurons as they acquire the ability to generate and propagate action potentials. Accordingly, neuroepithelial progenitors (NEPs), which give rise to all neurons and glial cells during development, have been reported to remain electrically passive. Here, we investigated the physiological properties of NEPs at the onset of spontaneous neural activity (SNA) initiating motor behavior in mouse embryonic spinal cord. Using patch-clamp recordings, we discovered that spinal NEPs exhibit spontaneous membrane depolarizations during episodes of SNA. These rhythmic depolarizations exhibited a ventral-to-dorsal gradient with the highest amplitude located in the floor plate, the ventral-most part of the neuroepithelium. Paired recordings revealed that NEPs are coupled via gap junctions and form an electrical syncytium. Although other NEPs were electrically passive, we discovered that floor-plate NEPs generated large Na+/Ca2+ action potentials. Unlike in neurons, floor-plate action potentials relied primarily on the activation of voltage-gated T-type calcium channels (TTCCs). In situ hybridization showed that all 3 known subtypes of TTCCs are predominantly expressed in the floor plate. During SNA, we found that acetylcholine released by motoneurons rhythmically triggers floor-plate action potentials by acting through nicotinic acetylcholine receptors. Finally, by expressing the genetically encoded calcium indicator GCaMP6f in the floor plate, we demonstrated that neuroepithelial action potentials are associated with calcium waves and propagate along the entire length of the spinal cord. Our work reveals a novel physiological mechanism to generate and propagate electrical signals across a neural structure independently from neurons.


Subject(s)
Motor Neurons , Spinal Cord , Action Potentials/physiology , Animals , Calcium Channels , Gap Junctions , Mice , Motor Neurons/physiology , Spinal Cord/physiology
2.
Glia ; 66(8): 1678-1694, 2018 08.
Article in English | MEDLINE | ID: mdl-29603384

ABSTRACT

Virtually all oligodendrocyte precursors cells (OPCs) receive glutamatergic and/or GABAergic synapses that are lost upon their differentiation into oligodendrocytes in the postnatal and adult brain. Although OPCs are generated at mid-embryonic stages, several weeks before the onset of myelination, it remains unknown when and where OPCs receive their first synapses and become susceptible to the influence of neuronal activity. In the embryonic spinal cord, neuro-epithelial precursors in the pMN domain cease generating cholinergic motor neurons (MNs) to produce OPCs when the first synapses are formed in the ventral-lateral marginal zone. We discovered that when the first synapses form onto MNs, axoglial synapses also form onto the processes of neuro-epithelial precursors located in the marginal zone as they differentiate into OPCs. After leaving the neuro-epithelium, these pioneer OPCs preferentially accumulate in the marginal zone where they are contacted by functional glutamatergic and GABAergic synapses. Spontaneous activity of these axoglial synapses was significantly potentiated by cholinergic signaling acting through presynaptic nicotinic acetylcholine receptors. Moreover, we discovered that chronic nicotine treatment significantly increases early OPC proliferation and density in the marginal zone. Our results demonstrate that OPCs are contacted by functional synapses as soon as they emerge from their precursor domain and that embryonic spinal cord colonization by OPCs can be regulated by cholinergic signaling acting onto these axoglial synapses.


Subject(s)
Axons/metabolism , Oligodendrocyte Precursor Cells/cytology , Oligodendroglia/metabolism , Synapses/pathology , Animals , Cell Differentiation/physiology , Mice , Motor Neurons/metabolism , Neurogenesis/physiology , Spinal Cord/metabolism , Stem Cells/physiology , Synapses/physiology
3.
Neuroscience ; 376: 188-203, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29374538

ABSTRACT

Histamine H3 receptors are widely distributed Gi-coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-ß-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H3-modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons.


Subject(s)
Acetylcholine/metabolism , Dopamine/metabolism , Interneurons/metabolism , Receptors, Histamine H3/metabolism , Ventral Striatum/metabolism , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Female , Histamine Agonists/pharmacology , Interneurons/drug effects , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Methylhistamines/pharmacology , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , RNA, Messenger/metabolism , Synaptosomes/metabolism , Tissue Culture Techniques , Ventral Striatum/drug effects
4.
Sci Rep ; 6: 24394, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27072430

ABSTRACT

Hypothalamic growth hormone-releasing hormone (GHRH) neurons orchestrate body growth/maturation and have been implicated in feeding responses and ageing. However, the electrical patterns that dictate GHRH neuron functions have remained elusive. Since the inhibitory neuropeptide somatostatin (SST) is considered to be a primary oscillator of the GH axis, we examined its acute effects on GHRH neurons in brain slices from male and female GHRH-GFP mice. At the cellular level, SST irregularly suppressed GHRH neuron electrical activity, leading to slow oscillations at the population level. This resulted from an initial inhibitory action at the GHRH neuron level via K(+) channel activation, followed by a delayed, sst1/sst2 receptor-dependent unbalancing of glutamatergic and GABAergic synaptic inputs. The oscillation patterns induced by SST were sexually dimorphic, and could be explained by differential actions of SST on both GABAergic and glutamatergic currents. Thus, a tripartite neuronal circuit involving a fast hyperpolarization and a dual regulation of synaptic inputs appeared sufficient in pacing the activity of the GHRH neuronal population. These "feed-forward loops" may represent basic building blocks involved in the regulation of GHRH release and its downstream sexual specific functions.


Subject(s)
Action Potentials/physiology , Growth Hormone-Releasing Hormone/metabolism , Hypothalamus/physiology , Somatostatin/physiology , Animals , Female , G Protein-Coupled Inwardly-Rectifying Potassium Channels/antagonists & inhibitors , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Patch-Clamp Techniques
5.
Endocrinology ; 155(5): 1887-98, 2014 May.
Article in English | MEDLINE | ID: mdl-24601879

ABSTRACT

Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice. Furthermore, GHRH stimulation enhanced GH to lower level in injured than in control or sham mice. Because many characteristics were unchanged in the pituitary glands of CCI mice, we looked for changes at the hypothalamic level. Hypertrophied astrocytes were seen both within the arcuate nucleus and the median eminence, two pivotal structures of the GH axis, spatially remote to the injury site. In the arcuate nucleus, GHRH neurons were unaltered. In the median eminence, injured mice exhibited unexpected alterations. First, the distributions of claudin-1 and zonula occludens-1 between tanycytes were disorganized, suggesting tight junction disruptions. Second, endogenous IgG was increased in the vicinity of the third ventricle, suggesting abnormal barrier properties after CCI. Third, intracerebroventricular injection of a fluorescent-dextran derivative highly stained the hypothalamic parenchyma only after CCI, demonstrating an increased permeability of the third ventricle edges. This alteration of the third ventricle might jeopardize the communication between the hypothalamus and the pituitary gland. In conclusion, the phenotype of CCI mice had similarities to the posttraumatic hypopituitarism seen in humans with intact pituitary gland and pituitary stalk. It is the first report of a pathological status in which tanycyte dysfunctions appear as a major acquired syndrome.


Subject(s)
Brain Injuries/physiopathology , Disease Models, Animal , Ependymoglial Cells/pathology , Hypopituitarism/etiology , Hypothalamus/pathology , Neurons/pathology , Tight Junctions/pathology , Animals , Arcuate Nucleus of Hypothalamus/immunology , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/pathology , Biomarkers/metabolism , Ependymoglial Cells/immunology , Ependymoglial Cells/metabolism , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Hypopituitarism/immunology , Hypopituitarism/metabolism , Hypopituitarism/pathology , Hypothalamus/immunology , Hypothalamus/metabolism , Immunoglobulin G/metabolism , Male , Median Eminence/immunology , Median Eminence/metabolism , Median Eminence/pathology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/immunology , Neurons/metabolism , Permeability , Recombinant Fusion Proteins/metabolism , Third Ventricle/immunology , Third Ventricle/metabolism , Third Ventricle/pathology , Tight Junctions/immunology , Tight Junctions/metabolism
6.
Endocrinology ; 152(9): 3492-503, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21733827

ABSTRACT

Apelin is a bioactive peptide identified as the endogenous ligand of the human orphan G protein-coupled receptor APJ in 1998. The present data show that apelin modulates the activity of magnocellular and parvocellular oxytocin (OXY) neurons in the lactating rat. A combination of in situ hybridization and immunohistochemistry demonstrated the presence of apelin receptor mRNA in hypothalamic OXY neurons. Double immunofluorescence labeling then revealed the colocalization of apelin with OXY in about 20% of the hypothalamic OXY-positive neurons. Intracerebroventricular apelin administration inhibited the activity of magnocellular and parvocellular OXY neurons, as shown by measuring the c-fos expression in OXY neurons or by direct electrophysiological measurements of the electrical activity of these neurons. This effect was correlated with a decrease in the amount of milk ejected. Thus, apelin inhibits the activity of OXY neurons through a direct action on apelin receptors expressed by these neurons in an autocrine and paracrine manner. In conclusion, these findings highlight the inhibitory role of apelin as an autocrine/paracrine peptide acting on OXY neurons during breastfeeding.


Subject(s)
Hypothalamus/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Lactation/metabolism , Neurons/metabolism , Oxytocin/metabolism , Animals , Apelin , Female , Hypothalamus/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/pharmacology , Neurons/drug effects , Rats , Rats, Wistar
7.
PLoS One ; 5(2): e9159, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20161791

ABSTRACT

BACKGROUND: Ghrelin targets the arcuate nucleus, from where growth hormone releasing hormone (GHRH) neurones trigger GH secretion. This hypothalamic nucleus also contains neuropeptide Y (NPY) neurons which play a master role in the effect of ghrelin on feeding. Interestingly, connections between NPY and GHRH neurons have been reported, leading to the hypothesis that the GH axis and the feeding circuits might be co-regulated by ghrelin. PRINCIPAL FINDINGS: Here, we show that ghrelin stimulates the firing rate of identified GHRH neurons, in transgenic GHRH-GFP mice. This stimulation is prevented by growth hormone secretagogue receptor-1 antagonism as well as by U-73122, a phospholipase C inhibitor and by calcium channels blockers. The effect of ghrelin does not require synaptic transmission, as it is not antagonized by gamma-aminobutyric acid, glutamate and NPY receptor antagonists. In addition, this hypothalamic effect of ghrelin is independent of somatostatin, the inhibitor of the GH axis, since it is also found in somatostatin knockout mice. Indeed, ghrelin does not modify synaptic currents of GHRH neurons. However, ghrelin exerts a strong and direct depolarizing effect on GHRH neurons, which supports their increased firing rate. CONCLUSION: Thus, GHRH neurons are a specific target for ghrelin within the brain, and not activated secondary to altered activity in feeding circuits. These results support the view that ghrelin related therapeutic approaches could be directed separately towards GH deficiency or feeding disorders.


Subject(s)
Action Potentials/drug effects , Ghrelin/pharmacology , Growth Hormone-Releasing Hormone/metabolism , Neurons/physiology , Animals , Arcuate Nucleus of Hypothalamus/cytology , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Dose-Response Relationship, Drug , Estrenes/pharmacology , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Growth Hormone-Releasing Hormone/genetics , Indoles , Male , Mice , Mice, Transgenic , Neurons/metabolism , Oligopeptides/pharmacology , Patch-Clamp Techniques , Pyrrolidinones/pharmacology , Receptors, Ghrelin/agonists , Tryptophan/analogs & derivatives , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...