Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mol Ther Nucleic Acids ; 29: 979-995, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36189080

ABSTRACT

The use of T cells from healthy donors for allogeneic chimeric antigen receptor T (CAR-T) cell cancer therapy is attractive because healthy donor T cells can produce versatile off-the-shelf CAR-T treatments. To maximize safety and durability of allogeneic products, the endogenous T cell receptor and major histocompatibility complex class I molecules are often removed via knockout of T cell receptor beta constant (TRBC) (or T cell receptor alpha constant [TRAC]) and B2M, respectively. However, gene editing tools (e.g., CRISPR-Cas9) can display poor fidelity, which may result in dangerous off-target mutations. Additionally, many gene editing technologies require T cell activation, resulting in a low percentage of desirable stem cell memory T cells (TSCM). We characterize an RNA-guided endonuclease, called Cas-CLOVER, consisting of the Clo051 nuclease domain fused with catalytically dead Cas9. In primary T cells from multiple donors, we find that Cas-CLOVER is a high-fidelity site-specific nuclease, with low off-target activity. Notably, Cas-CLOVER yields efficient multiplexed gene editing in resting T cells. In conjunction with the piggyBac transposon for delivery of a CAR transgene against the B cell maturation antigen (BCMA), we produce allogeneic CAR-T cells composed of high percentages of TSCM cells and possessing potent in vivo anti-tumor cytotoxicity.

3.
Transfusion ; 56(7): 1775-85, 2016 07.
Article in English | MEDLINE | ID: mdl-27040023

ABSTRACT

BACKGROUND: Acquired thrombotic thrombocytopenic purpura (TTP) is a potentially fatal disease in which ultralarge von Willebrand factor (UL-VWF) multimers accumulate as a result of autoantibody inhibition of the VWF protease, ADAMTS13. Current treatment is not specifically directed at the responsible autoantibodies and in some cases is ineffective or of transient benefit. More rational, reliable, and durable therapies are needed, and a human autoantibody-mediated animal model would be useful for their development. Previously, TTP patient anti-ADAMTS13 single-chain variable-region fragments (scFv's) were cloned that inhibited ADAMTS13 proteolytic activity in vitro and expressed features in common with inhibitory immunoglobulin G in patient plasma. Here, pathogenicity of these scFv's is explored in vivo by transfecting mice with inhibitory antibody cDNA. STUDY DESIGN AND METHODS: Hydrodynamic tail vein injection of naked DNA encoding human anti-ADAMTS13 scFv was used to create sustained ADAMTS13 inhibition in mice. Accumulation of UL-VWF multimers was measured and formation of platelet (PLT) thrombi after focal or systemic vascular injury was examined. RESULTS: Transfected mice expressed physiological plasma levels of human scFv and developed sustained ADAMTS13 inhibition and accumulation of unprocessed UL-VWF multimers. Induced focal endothelial injury generated PLT thrombi extending well beyond the site of initial injury, and systemic endothelial injury induced thrombocytopenia, schistocyte formation, PLT thrombi, and death. CONCLUSIONS: These results demonstrate for the first time the ability of human recombinant monovalent anti-ADAMTS13 antibody fragments to recapitulate key pathologic features of untreated acquired TTP in vivo, validating their clinical significance and providing an animal model for testing novel targeted therapeutic approaches.


Subject(s)
ADAMTS13 Protein/antagonists & inhibitors , Autoantibodies , Purpura, Thrombotic Thrombocytopenic/immunology , Purpura, Thrombotic Thrombocytopenic/therapy , ADAMTS13 Protein/immunology , Animals , Autoantibodies/genetics , Cloning, Molecular , DNA, Complementary/administration & dosage , Humans , Mice , Models, Animal , Molecular Targeted Therapy/methods , Single-Chain Antibodies/genetics , Single-Chain Antibodies/toxicity , von Willebrand Factor/metabolism
4.
Transfusion ; 56(7): 1763-74, 2016 07.
Article in English | MEDLINE | ID: mdl-27040144

ABSTRACT

BACKGROUND: Acquired thrombotic thrombocytopenia purpura (TTP) is a life-threatening illness caused by autoantibodies that decrease the activity of ADAMTS13, the von Willebrand factor-cleaving protease. Despite efficacy of plasma exchange, mortality remains high and relapse is common. Improved therapies may come from understanding the diversity of pathogenic autoantibodies on a molecular or genetic level. Cloning comprehensive repertoires of patient autoantibodies can provide the necessary tools for studying immunobiology of disease and developing animal models. STUDY DESIGN AND METHODS: Anti-ADAMTS13 antibodies were cloned from four patients with acquired TTP using phage display and characterized with respect to genetic origin, inhibition of ADAMTS13 proteolytic activity, and epitope specificity. Anti-idiotypic antisera raised to a subset of autoantibodies enabled comparison of their relatedness to each other and to polyclonal immunoglobulin (Ig)G in patient plasma. RESULTS: Fifty-one unique antibodies were isolated comprising epitope specificities resembling the diversity found in circulating patient IgG. Antibodies directed both to the amino terminal domains and to those requiring the ADAMTS13 cysteine-rich/spacer region for binding inhibited proteolytic activity, while those solely targeting carboxy-terminal domains were noninhibitory. Anti-idiotypic antisera raised to a subset of antibody clones crossreacted with and reduced the inhibitory activity of polyclonal IgG from a set of unrelated patients. CONCLUSIONS: Anti-ADAMTS13 autoantibodies isolated by repertoire cloning display the diversity of epitope specificities found in patient plasma and provide tools for developing animal models of acquired TTP. Shared idiotypes of inhibitory clones with circulating IgG from multiple patients suggest common features of pathogenic autoantibodies that could be exploited for developing more targeted therapies.


Subject(s)
ADAMTS13 Protein/immunology , Autoantibodies/isolation & purification , Purpura, Thrombotic Thrombocytopenic/immunology , Adult , Antibody Specificity , Cell Surface Display Techniques , Child , Cloning, Molecular , Cross Reactions/immunology , Epitope Mapping , Humans , Immunoglobulin G/blood , Middle Aged
5.
Pharm Res ; 33(3): 573-89, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26508477

ABSTRACT

PURPOSE: To develop a technique that maximizes the encapsulation of functional proteins within neutrally charged, fully PEGylated and nanoscale polymer vesicles (i.e., polymersomes). METHODS: Three conventional vesicle formation methods were utilized for encapsulation of myoglobin (Mb) in polymersomes of varying size, PEG length, and membrane thickness. Mb concentrations were monitored by UV-Vis spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES) and by the bicinchoninic acid (BCA) assay. Suspensions were subject to protease treatment to differentiate the amounts of surface-associated vs. encapsulated Mb. Polymersome sizes and morphologies were monitored by dynamic light scattering (DLS) and by cryogenic transmission electron microscopy (cryo-TEM), respectively. Binding and release of oxygen were measured using a Hemeox analyzer. RESULTS: Using the established "thin-film rehydration" and "direct hydration" methods, Mb was found to be largely surface-associated with negligible aqueous encapsulation within polymersome suspensions. Through iterative optimization, a novel "progressive saturation" technique was developed that greatly increased the final concentrations of Mb (from < 0.5 to > 2.0 mg/mL in solution), the final weight ratio of Mb-to-polymer that could be reproducibly obtained (from < 1 to > 4 w/w% Mb/polymer), as well as the overall efficiency of Mb encapsulation (from < 5 to > 90%). Stable vesicle morphologies were verified by cryo-TEM; the suspensions also displayed no signs of aggregate formation for > 2 weeks as assessed by DLS. "Progressive saturation" was further utilized for the encapsulation of a variety of other proteins, ranging in size from 17 to 450 kDa. CONCLUSIONS: Compared to established vesicle formation methods, "progressive saturation" increases the quantities of functional proteins that may be encapsulated in nanoscale polymersomes.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Proteins/chemistry , Microscopy, Electron, Transmission/methods , Myoglobin/chemistry , Nanotechnology/methods , Particle Size , Polyethylene Glycols/chemistry , Suspensions/chemistry
6.
Proc Natl Acad Sci U S A ; 112(31): 9620-5, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26203127

ABSTRACT

Acquired thrombotic thrombocytopenic purpura (TTP), a thrombotic disorder that is fatal in almost all cases if not treated promptly, is primarily caused by IgG-type autoantibodies that inhibit the ability of the ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) metalloprotease to cleave von Willebrand factor (VWF). Because the mechanism of autoantibody-mediated inhibition of ADAMTS13 activity is not known, the only effective therapy so far is repeated whole-body plasma exchange. We used hydrogen-deuterium exchange mass spectrometry (HX MS) to determine the ADAMTS13 binding epitope for three representative human monoclonal autoantibodies, isolated from TTP patients by phage display as tethered single-chain fragments of the variable regions (scFvs). All three scFvs bind the same conformationally discontinuous epitopic region on five small solvent-exposed loops in the spacer domain of ADAMTS13. The same epitopic region is also bound by most polyclonal IgG autoantibodies in 23 TTP patients that we tested. The ability of ADAMTS13 to proteolyze VWF is impaired by the binding of autoantibodies at the epitopic loops in the spacer domain, by the deletion of individual epitopic loops, and by some local mutations. Structural considerations and HX MS results rule out any disruptive structure change effect in the distant ADAMTS13 metalloprotease domain. Instead, it appears that the same ADAMTS13 loop segments that bind the autoantibodies are also responsible for correct binding to the VWF substrate. If so, the autoantibodies must prevent VWF proteolysis simply by physically blocking normal ADAMTS13 to VWF interaction. These results point to the mechanism for autoantibody action and an avenue for therapeutic intervention.


Subject(s)
Deuterium Exchange Measurement/methods , Epitope Mapping , Mass Spectrometry/methods , Purpura, Thrombotic Thrombocytopenic/pathology , Purpura, Thrombotic Thrombocytopenic/therapy , ADAM Proteins/blood , ADAM Proteins/chemistry , ADAM Proteins/metabolism , ADAMTS13 Protein , Adult , Aged , Amino Acid Sequence , Antigens/metabolism , Binding Sites , Binding, Competitive , Child , Demography , Epitopes/chemistry , Female , Humans , Immunoglobulin G/metabolism , Kinetics , Male , Middle Aged , Molecular Sequence Data , Protein Binding , Proteolysis , Sequence Alignment , Sequence Deletion , Single-Chain Antibodies/metabolism , Young Adult
7.
Nat Neurosci ; 16(9): 1284-90, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23872594

ABSTRACT

TMEM16C belongs to the TMEM16 family, which includes the Ca(2+)-activated Cl(-) channels TMEM16A and TMEM16B and a small-conductance, Ca(2+)-activated, nonselective cation channel (SCAN), TMEM16F. We found that in rat dorsal root ganglia (DRG) TMEM16C was expressed mainly in the IB4-positive, non-peptidergic nociceptors that also express the sodium-activated potassium (K(Na)) channel Slack. Together these channel proteins promote K(Na) channel activity and dampen neuronal excitability. DRG from TMEM16C knockout rats had diminished Slack expression, broadened action potentials and increased excitability. Moreover, the TMEM16C knockout rats, as well as rats with Slack knockdown by intrathecal injection of short interfering RNA, exhibited increased thermal and mechanical sensitivity. Experiments involving heterologous expression in HEK293 cells further showed that TMEM16C modulated the single-channel activity of Slack channels and increased its sodium sensitivity. Our study thus reveals that TMEM16C enhances K(Na) channel activity in DRG neurons and regulates the processing of pain messages.


Subject(s)
Chloride Channels/metabolism , Nerve Tissue Proteins/metabolism , Pain Threshold/physiology , Potassium Channels/metabolism , Sensory Receptor Cells/physiology , Sodium/metabolism , Animals , Cadmium/pharmacology , Cells, Cultured , Chloride Channels/deficiency , Chloride Channels/genetics , Ganglia, Spinal/cytology , Gene Expression Regulation/genetics , Humans , Hyperalgesia/chemically induced , Hyperalgesia/genetics , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mice , Mutation/physiology , Nerve Tissue Proteins/genetics , New Brunswick , Pain Measurement , Pain Threshold/drug effects , Potassium Channels/genetics , Potassium Channels, Sodium-Activated , RNA, Small Interfering/pharmacology , Rats , Rats, Transgenic , Sensory Receptor Cells/drug effects , Sodium Chloride/pharmacology , Spinal Cord/cytology
8.
Genes Dev ; 23(11): 1303-12, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19487571

ABSTRACT

Long Interspersed Element 1 (L1) is a retrotransposon that comprises approximately 17% of the human genome. Despite its abundance in mammalian genomes, relatively little is understood about L1 retrotransposition in vivo. To study the timing and tissue specificity of retrotransposition, we created transgenic mouse and rat models containing human or mouse L1 elements controlled by their endogenous promoters. Here, we demonstrate abundant L1 RNA in both germ cells and embryos. However, the integration events usually occur in embryogenesis rather than in germ cells and are not heritable. We further demonstrate L1 RNA in preimplantation embryos lacking the L1 transgene and L1 somatic retrotransposition events in blastocysts and adults lacking the transgene. Together, these data indicate that L1 RNA transcribed in male or female germ cells can be carried over through fertilization and integrate during embryogenesis, an interesting example of heritability of RNA independent of its encoding DNA. Thus, L1 creates somatic mosaicism during mammalian development, suggesting a role for L1 in carcinogenesis and other disease.


Subject(s)
Embryonic Development/physiology , Long Interspersed Nucleotide Elements/physiology , Mosaicism , Animals , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Female , Genome/genetics , Genotype , Germ Cells/metabolism , Long Interspersed Nucleotide Elements/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA/metabolism , Rats , Rats, Sprague-Dawley , Rats, Transgenic
9.
Genome Biol ; 8 Suppl 1: S16, 2007.
Article in English | MEDLINE | ID: mdl-18047693

ABSTRACT

LINE1 (L1) retrotransposons are genetic elements that are present in all mammalian genomes. L1s are active in both humans and mice, and are capable of copying themselves and inserting the copy into a new genomic location. These de novo insertions occasionally result in disease. Endogenous L1 retrotransposons can be modified to increase their activity and mutagenic power in a variety of ways. Here we outline the advantages of using modified L1 retrotransposons for performing random mutagenesis in rodents and discuss several potential applications.


Subject(s)
Mutagenesis , Retroelements/genetics , Rodentia/genetics , Animals , Organ Specificity
10.
Genome Res ; 17(8): 1129-38, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17623810

ABSTRACT

Most new genes arise by duplication of existing gene structures, after which relaxed selection on the new copy frequently leads to mutational inactivation of the duplicate; only rarely will a new gene with modified function emerge. Here we describe a unique mechanism of gene creation, whereby new combinations of functional domains are assembled at the RNA level from distinct genes, and the resulting chimera is then reverse transcribed and integrated into the genome by the L1 retrotransposon. We characterized a novel gene, which we termed PIP5K1A and PSMD4-like (PIPSL), created by this mechanism from an intergenic transcript between the phosphatidylinositol-4-phosphate 5-kinase (PIP5K1A) and the 26S proteasome subunit (PSMD4) genes in a hominoid ancestor. PIPSL is transcribed specifically in the testis both in humans and chimpanzees, and is post-transcriptionally repressed by independent mechanisms in these primate lineages. The PIPSL gene encodes a chimeric protein combining the lipid kinase domain of PIP5K1A and the ubiquitin-binding motifs of PSMD4. Strong positive selection on PIPSL led to its rapid divergence from the parental genes PIP5K1A and PSMD4, forming a chimeric protein with a distinct cellular localization and minimal lipid kinase activity, but significant affinity for cellular ubiquitinated proteins. PIPSL is a tightly regulated, testis-specific novel ubiquitin-binding protein formed by an unusual exon-shuffling mechanism in hominoid primates and represents a key example of rapid evolution of a testis-specific gene.


Subject(s)
Carrier Proteins/genetics , Evolution, Molecular , Pan troglodytes/genetics , Retroelements , Testis/metabolism , Ubiquitin/metabolism , Animals , Binding Sites , Carrier Proteins/metabolism , Exons , HeLa Cells , Hominidae/genetics , Hominidae/metabolism , Humans , Male , Minor Histocompatibility Antigens , Models, Genetic , Mutant Chimeric Proteins/genetics , Pan troglodytes/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis , Protein Structure, Tertiary , RNA-Binding Proteins , Selection, Genetic , Transcription, Genetic
11.
Genome Res ; 16(2): 240-50, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16365384

ABSTRACT

To study integration of the human LINE-1 retrotransposon (L1) in vivo, we developed a transgenic mouse model of L1 retrotransposition that displays de novo somatic L1 insertions at a high frequency, occasionally several insertions per mouse. We mapped 3' integration sites of 51 insertions by Thermal Asymmetric Interlaced PCR (TAIL-PCR). Analysis of integration locations revealed a broad genomic distribution with a modest preference for intergenic regions. We characterized the complete structures of 33 de novo retrotransposition events. Our results highlight the large number of highly truncated L1s, as over 52% (27/51) of total integrants were <1/3 the length of a full-length element. New integrants carry all structural characteristics typical of genomic L1s, including a number with inversions, deletions, and 5'-end microhomologies to the target DNA sequence. Notably, at least 13% (7/51) of all insertions contain a short stretch of extra nucleotides at their 5' end, which we postulate result from template-jumping by the L1-encoded reverse transcriptase. We propose a unified model of L1 integration that explains all of the characteristic features of L1 retrotransposition, such as 5' truncations, inversions, extra nucleotide additions, and 5' boundary and inversion point microhomologies.


Subject(s)
Chromosome Inversion/genetics , DNA, Intergenic/genetics , Long Interspersed Nucleotide Elements/genetics , Models, Genetic , Mutagenesis, Insertional , Animals , Genome , Humans , Mice , Mice, Transgenic , Sequence Homology, Nucleic Acid
13.
Hum Mol Genet ; 13(10): 1041-8, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15028673

ABSTRACT

Determining the subcellular localization of the L1 ORF2 protein (ORF2p) has been impossible to date because of technical limitations in detecting either endogenous or overexpressed forms of the protein. Here we report visualization of the full-length ORF2p in cultured human cells following expression in a modified vaccinia virus/T7 RNA polymerase (MVA/T7RP) system. The MVA/T7RP system was used to ascertain subcellular localization of L1 ORF1p and ORF2p both as fusions with green fluorescent protein and by immunocytochemistry. Full-length ORF2p was predominantly cytoplasmic, while carboxy-terminal-deleted ORF2p localized additionally to the nucleolus. We mapped a functional nucleolar localization signal in ORF2p. ORF1p appeared in the cytoplasm with a speckled pattern and colocalized with ORF2p in nucleoli in a subset of cells. These findings help explain the presence of chimeras between L1s and small RNA gene sequences recently discovered in the human genome.


Subject(s)
Cell Nucleolus/chemistry , Endonucleases/analysis , Long Interspersed Nucleotide Elements/genetics , RNA-Directed DNA Polymerase/analysis , Ribonucleoproteins/analysis , Cell Culture Techniques , Cell Nucleolus/ultrastructure , Cloning, Molecular , Cytoplasm/ultrastructure , DNA Transposable Elements , DNA-Directed RNA Polymerases/genetics , Endonucleases/genetics , Endonucleases/metabolism , Endothelial Cells/ultrastructure , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Humans , Immunochemistry , Nuclear Localization Signals/genetics , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Umbilical Veins/cytology , Viral Proteins
14.
Am J Hum Genet ; 73(6): 1444-51, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14628287

ABSTRACT

L1 elements are the only active autonomous retrotransposons in the human genome. The nonautonomous Alu elements, as well as processed pseudogenes, are retrotransposed by the L1 retrotransposition proteins working in trans. Here, we describe another repetitive sequence in the human genome, the SVA element. Our analysis reveals that SVA elements are currently active in the human genome. SVA elements, like Alus and L1s, occasionally insert into genes and cause disease. Furthermore, SVA elements are probably mobilized in trans by active L1 elements.


Subject(s)
Genetic Diseases, Inborn , Retroelements/genetics , Base Sequence , Chromosome Mapping , Cluster Analysis , DNA Primers , Humans , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA
15.
Nat Genet ; 32(4): 655-60, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12415270

ABSTRACT

The L1 retrotransposon has had an immense impact on the size and structure of the human genome through a variety of mechanisms, including insertional mutagenesis. To study retrotransposition in a living organism, we created a mouse model of human L1 retrotransposition. Here we show that L1 elements can retrotranspose in male germ cells, and that expression of a human L1 element under the control of its endogenous promoter is restricted to testis and ovary. In the mouse line with the highest level of L1 expression, we found two de novo L1 insertions in 135 offspring. Both insertions were structurally indistinguishable from natural endogenous insertions. This suggests that an individual L1 element can have substantial mutagenic potential. In addition to providing a valuable in vivo model of retrotransposition in mammals, these mice are an important step in the development of a new random mutagenesis system.


Subject(s)
Mice , Models, Animal , Models, Genetic , Retroelements , 3' Untranslated Regions , 5' Untranslated Regions , Acrosin/metabolism , Acrosome/metabolism , Animals , Cells, Cultured , DNA/genetics , Genetic Markers , Green Fluorescent Proteins , Humans , Long Interspersed Nucleotide Elements , Luminescent Proteins/metabolism , Male , Mice, Transgenic , Mutagenesis, Insertional , Open Reading Frames , Promoter Regions, Genetic , RNA, Messenger/genetics , Spermatozoa/cytology , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...