Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 44397, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28401915

ABSTRACT

Equi-atomic FeRh is highly unusual in that it undergoes a first order meta-magnetic phase transition from an antiferromagnet to a ferromagnet above room temperature (Tr ≈ 370 K). This behavior opens new possibilities for creating multifunctional magnetic and spintronic devices which can utilise both thermal and applied field energy to change state and functionalise composites. A key requirement in realising multifunctional devices is the need to understand and control the properties of FeRh in the extreme thin film limit (tFeRh < 10 nm) where interfaces are crucial. Here we determine the properties of FeRh films in the thickness range 2.5-10 nm grown directly on MgO substrates. Our magnetometry and structural measurements show that a perpendicular strain field exists in these thin films which results in an increase in the phase transition temperature as thickness is reduced. Modelling using a spin dynamics approach supports the experimental observations demonstrating the critical role of the atomic layers close to the MgO interface.

2.
Phys Rev Lett ; 115(6): 067202, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26296129

ABSTRACT

The dynamics of magnetic vortex cores is of great interest because the gyrotropic mode has applications in spin torque driven magnetic microwave oscillators, and also provides a means to flip the direction of the core for use in magnetic storage devices. Here, we propose a new means of stimulating magnetization reversal of the vortex core by applying a time-varying strain gradient to planar structures of the magnetostrictive material Fe(81)Ga(19) (Galfenol), coupled to an underlying piezoelectric layer. Using micromagnetic simulations we have shown that the vortex core state can be deterministically reversed by electric field control of the time-dependent strain-induced anisotropy.

3.
J Phys Condens Matter ; 26(10): 103202, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24552692

ABSTRACT

Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here we present the key methods used in atomistic spin models which are then applied to a range of magnetic problems. We detail the parallelization strategies used which enable the routine simulation of extended systems with full atomistic resolution.


Subject(s)
Electromagnetic Fields , Models, Chemical , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Quantum Theory , Spin Labels , Computer Simulation , Models, Statistical
4.
Sci Rep ; 3: 3262, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24253110

ABSTRACT

There has been much interest recently in the discovery of thermally induced magnetisation switching using femtosecond laser excitation, where a ferrimagnetic system can be switched deterministically without an applied magnetic field. Experimental results suggest that the reversal occurs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two-magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the onset of switching and the identification of this mechanism will allow new classes of materials to be identified or designed for memory devices in the THz regime.

5.
Nat Commun ; 3: 666, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22314362

ABSTRACT

The question of how, and how fast, magnetization can be reversed is a topic of great practical interest for the manipulation and storage of magnetic information. It is generally accepted that magnetization reversal should be driven by a stimulus represented by time-non-invariant vectors such as a magnetic field, spin-polarized electric current, or cross-product of two oscillating electric fields. However, until now it has been generally assumed that heating alone, not represented as a vector at all, cannot result in a deterministic reversal of magnetization, although it may assist this process. Here we show numerically and demonstrate experimentally a novel mechanism of deterministic magnetization reversal in a ferrimagnet driven by an ultrafast heating of the medium resulting from the absorption of a sub-picosecond laser pulse without the presence of a magnetic field.

6.
Nature ; 472(7342): 205-8, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21451521

ABSTRACT

Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism. Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of exchange-coupled spins, that is, spin resonances, after an external perturbation by a pulse of magnetic field, current or light. The periods of the corresponding resonances range from one nanosecond for ferromagnets down to one picosecond for antiferromagnets. However, virtually nothing is known about the behaviour of spins in a magnetic material after being excited on a timescale faster than that corresponding to the exchange interaction (10-100 fs), that is, in a non-adiabatic way. Here we use the element-specific technique X-ray magnetic circular dichroism to study spin reversal in GdFeCo that is optically excited on a timescale pertinent to the characteristic time of the exchange interaction between Gd and Fe spins. We unexpectedly find that the ultrafast spin reversal in this material, where spins are coupled antiferromagnetically, occurs by way of a transient ferromagnetic-like state. Following the optical excitation, the net magnetizations of the Gd and Fe sublattices rapidly collapse, switch their direction and rebuild their net magnetic moments at substantially different timescales; the net magnetic moment of the Gd sublattice is found to reverse within 1.5 picoseconds, which is substantially slower than the Fe reversal time of 300 femtoseconds. Consequently, a transient state characterized by a temporary parallel alignment of the net Gd and Fe moments emerges, despite their ground-state antiferromagnetic coupling. These surprising observations, supported by atomistic simulations, provide a concept for the possibility of manipulating magnetic order on the timescale of the exchange interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...