Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338740

ABSTRACT

Some parasites are known to influence brain proteins or induce changes in the functioning of the nervous system. In this study, our objective is to demonstrate how the two-dimensional gel technique is valuable for detecting differences in protein expression and providing detailed information on changes in the brain proteome during a parasitic infection. Subsequently, we seek to understand how the parasitic infection affects the protein composition in the brain and how this may be related to changes in brain function. By analyzing de novo-expressed proteins at 2, 4, and 8 weeks post-infection compared to the brains of the control mice, we observed that proteins expressed at 2 weeks are primarily associated with neuroprotection or the initial response of the mouse brain to the infection. At 8 weeks, parasitic infection can induce oxidative stress in the brain, potentially activating signaling pathways related to the response to cellular damage. Proteins expressed at 8 weeks exhibit a pattern indicating that, as the host fails to balance the Neuro-Immuno-Endocrine network of the organism, the brain begins to undergo an apoptotic process and consequently experiences brain damage.


Subject(s)
Parasites , Parasitic Diseases , Taenia , Animals , Mice , Brain , Mice, Inbred BALB C
2.
Pathogens ; 12(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37242348

ABSTRACT

A cysticercosis model of Taenia crassiceps ORF strain in susceptible BALB/c mice revealed a Th2 response after 4 weeks, allowing for the growth of the parasite, whereas resistant C57BL/6 mice developed a sustained Th1 response, limiting parasitic growth. However, little is known about how cysticerci respond to an immunological environment in resistant mice. Here, we show that the Th1 response, during infection in resistant C57BL/6 mice, lasted up to 8 weeks and kept parasitemia low. Proteomics analysis of parasites during this Th1 environment showed an average of 128 expressed proteins; we chose 15 proteins whose differential expression varied between 70 and 100%. A total of 11 proteins were identified that formed a group whose expression increased at 4 weeks and decreased at 8 weeks, and another group with proteins whose expression was high at 2 weeks and decreased at 8 weeks. These identified proteins participate in tissue repair, immunoregulation and parasite establishment. This suggests that T. crassiceps cysticerci in mice resistant under the Th1 environment express proteins that control damage and help to establish a parasite in the host. These proteins could be targets for drugs or vaccine development.

3.
PeerJ ; 10: e14175, 2022.
Article in English | MEDLINE | ID: mdl-36275472

ABSTRACT

We analyzed the recognition of tumor antigens by IgM in transgenic MMTV-PyVT mice. PyVT female mice are a model of breast cancer that simulates its counterpart in humans. The PyVT model allows studying antigen recognition in two conditions: before and during tumor expression. We attempted to identify by sequence, the antigens recognized by IgM that are expressed or disappear in the membrane of breast transgenic tissue during the transition "No tumor-Tumor". 2D immunoblots were obtained of isolated membranes from the breast tissue in the fifth, sixth, and seventh week (transition point). Proteins recognized by IgM were sequenced in duplicate by MALDI-TOF. In the transition, we observed the disappearance of antigens in transgenic mice with respect to non-transgenic ones. We believe that in the diagnosis of cancer in its early stages, the expression of early antigens is as important as their early delocalization, with the latter having the advantage that, under normal conditions, we can know which proteins should be present at a given time. Therefore, we could consider that also the absence of antigens could be considered as a biomarker of cancer in progress.


Subject(s)
Mammary Neoplasms, Experimental , Humans , Mice , Female , Animals , Mammary Neoplasms, Experimental/pathology , Proteomics , Mice, Transgenic , Antigens, Neoplasm , Immunoglobulin M
4.
Eng Life Sci ; 21(8-9): 539-543, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34584518

ABSTRACT

Two-dimensional (2D) culture of cells from giant cell tumor of bone (GCTB) is affected by loss of the multinucleated giant cells in subsequent passages. Therefore, there is limited time to study GCTB with all its histological components in 2D culture. Here, we explored the possibility of culturing GCTB cells on a polycaprolactone (PCL)-printed scaffold. We also evaluated the viability of the cultured cells and their adherence to the PCL scaffold at day 14 days using immunofluorescence analysis with calcein, vinculin, and phalloidin. Using the histological technique with hematoxylin and eosin staining, we observed all the histological components of GCTB in this 3D model. Immunohistochemical assays with cathepsin K, p63, and receptor activator of nuclear factor (NF)-κB ligand (RANKL) yielded positive results in this construct, which allowed us to confirm that the seeded cells maintained the expression of GCTB markers. Based on these findings, we concluded that the PCL scaffold is an efficient model to culture GCTB cells, and the cell viability and adherence to the scaffold can be preserved for up to 14 days. Moreover, this model can also be used in subsequent studies to assess in vitro cell-cell interactions and antineoplastic efficacy of certain agents to establish a treatment against GCTB.

5.
Microorganisms ; 9(3)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801356

ABSTRACT

Toxoplasmosis is a zoonotic disease caused by the apicomplexa protozoan parasite Toxoplasma gondii. This disease is a health burden, mainly in pregnant women and immunocompromised individuals. Dehydroepiandrosterone (DHEA) has proved to be an important molecule that could drive resistance against a variety of infections, including intracellular parasites such as Plasmodium falciparum and Trypanozoma cruzi, among others. However, to date, the role of DHEA on T. gondii has not been explored. Here, we demonstrated for the first time the toxoplasmicidal effect of DHEA on extracellular tachyzoites. Ultrastructural analysis of treated parasites showed that DHEA alters the cytoskeleton structures, leading to the loss of the organelle structure and organization as well as the loss of the cellular shape. In vitro treatment with DHEA reduces the viability of extracellular tachyzoites and the passive invasion process. Two-dimensional (2D) SDS-PAGE analysis revealed that in the presence of the hormone, a progesterone receptor membrane component (PGRMC) with a cytochrome b5 family heme/steroid binding domain-containing protein was expressed, while the expression of proteins that are essential for motility and virulence was highly reduced. Finally, in vivo DHEA treatment induced a reduction of parasitic load in male, but not in female mice.

6.
Front Biosci (Landmark Ed) ; 26(3): 431-443, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33049676

ABSTRACT

The communication between neuroendocrine and immune system maintains a bidirectional complex network. Both systems jointly act during a parasite infection to maintain homeostasis and to eliminate such pathogens. Parasites interfere with the synthesis, secretion, metabolism, action, and elimination of endogenous hormones, as well as with the immune system in the host. Here, we aim to address as how parasite colonization disrupts the normal homeostasis of endocrine organs of the host, likely due to the exacerbated immune response, or by the impact of the parasite directly affecting endocrine tissues.


Subject(s)
Endocrine System/physiology , Host-Parasite Interactions , Immune System/physiology , Nervous System Physiological Phenomena , Animals , Humans
7.
J Neuroimmunol ; 349: 577426, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33096292

ABSTRACT

Previously, we have demonstrated that ß-estradiol-3-benzoate (EB) has a protective effect on the neurodegenerative experimental model of Parkinson's disease. The protective effect is through the induction of the expression of paraoxonase-2 (PON2) in the striatum. PON2 has proven to have antioxidant and anti-inflammatory activity, this protein has a beneficial effect in MPP+ model in rats decreasing the lipid peroxidation and the oxidative stress. Furthermore, the molecular effect and the pathway by which EB induces protection were not further pursued. This study shows the regulation by EB of the anti-inflammatory effect through the modulation of cytokines, antioxidant enzymes and PON2 in the rat striatum. Rats were gonadectomized and 30 days after were randomly assigned into four experimental groups; only vehicles (Control group); EB treatment (EB group); MPP+ injury (M group); EB plus MPP+ injured (EB/M group). EB treatment consisted of 100 µg of the drug administered every 48 h for 11 days. Results showed that EB (group EB/M) treatment decrease significantly (40%) the number of ipsilateral turns respect to the M group and prevents significantly the dopamine (DA) decreased induced by MPP+ (~75%). This results are correlate with a significant decrease in the level of lipid peroxidation (60%) of the EB/M group respect to the M group. The EB treatment showed protection against neurotoxicity induced with MPP+, this could be due to EB capacity to prevent the increase in the expression level of proinflammatory cytokines TNF-α, IL-1 and IL-6 induced by MPP+. While, TGF-ß1 and TGF-ß3 expression was reduced in the rats treated only with MPP+, in the rats of EB/M group the expression of both cytokines was increased. EB protective effect against MPP+ neurotoxicity is related to antioxidant effect of PON2, pro-inflammatory cytokines and GSHR but not to SOD2, catalase, GPX1 or GPX4.


Subject(s)
Corpus Striatum/metabolism , Cytokines/metabolism , Estradiol/analogs & derivatives , Neuroprotective Agents/therapeutic use , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Corpus Striatum/drug effects , Cytokines/antagonists & inhibitors , Estradiol/pharmacology , Estradiol/therapeutic use , Male , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/prevention & control , Random Allocation , Rats , Rats, Wistar , Substantia Nigra/drug effects
8.
Acta Trop ; 212: 105696, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32956635

ABSTRACT

The intraperitoneal cysticercosis model with the Taenia crassiceps ORF strain in female BALB/cAnN mice has been widely used to study the immune response in cysticercosis. During early infection (2 weeks), the host develops a non-permissive Th1 response, whereas during late infection (8 weeks), molecules from the cysticerci induce a Th2 response that is permissive to parasite growth. The modulation of the Th2 response is induced by molecules excreted/secreted by the larval stage of the parasite. However, there is limited information regarding the response of cysticerci to the mouse immunological environment during infection. The proteomic profiles in T. crassiceps ORF cysticerci when faced with the mouse Th1 and Th2 responses were analyzed through two-dimensional gel electrophoresis (2DE), and the differential expression of proteins was evaluated. Thirteen proteins, whose differential expression varied between 70% and 100%, were selected randomly. Protein identification by MALDI-TOF MS and BLAST showed that the proteins were related to folding, signaling, enzymatic activities, cell-movement regulation, cell-cell interactions, motility, carbohydrate metabolism, detoxification, and redox regulation processes. Notably, some of the proteins can act as antigenic-protective molecules and elicit a weak Th1 response; however, most are involved in the avoidance of the immune system, which leads to a Th2 response, or apoptosis. The findings indicate the process by which T. crassiceps cysticerci responds based on the host environment and provides novel insights into the mechanism by which this facilitates its establishment and persistence in the mouse. Furthermore, these proteins could be used as targets for drug and vaccine development.


Subject(s)
Cysticercosis/immunology , Helminth Proteins/analysis , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Cysticercosis/metabolism , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C
9.
Front Oncol ; 10: 736, 2020.
Article in English | MEDLINE | ID: mdl-32547942

ABSTRACT

Worldwide, breast cancer is the most important type of cancer in women with regard to incidence and prevalence. Several risk factors interact to increase the probability of breast cancer development. Biological environmental contaminants such as infectious agents play a significant role in tumor development, and helminths have been recognized as cancer enhancers or inducers due to their ability to regulate the host immune response. Toxocara canis is a zoonotic and cosmopolite nematode with immuno-regulatory abilities. T. canis infection has been related to T helper type-2 cell (Th2 or type 2) and regulatory responses. Type 2 and regulatory immune responses may favor the development of comorbidities that are usually controlled or eliminated through a type 1 response such as cancer. The aim of this study was to determine whether T. canis infection alters mammary tumor growth through modulation of the immune response. Infected mice developed larger tumors. Tumor immune cell milieu analysis revealed that infection reduced the proportions of CD8+ lymphocytes and increased the proportions of F4/80+ macrophages and CD19+ B cells. These changes were accompanied by a type 2 local response represented by increased amounts of IL-4 and VEGF and a regulatory microenvironment associated with higher IL-10 levels. Thus, this study demonstrates that T. canis infection enhances tumor development and suggests that this is through modulation of the tumor immune microenvironment.

10.
Immunotherapy ; 12(1): 9-24, 2020 01.
Article in English | MEDLINE | ID: mdl-31914828

ABSTRACT

Aim: Glucose intolerance associates with M1/M2 macrophage unbalance. We thus wanted to examine the effect of M2 macrophage administration on mouse model of glucose intolerance. Materials & methods: C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks and then received thrice 20 mg/kg streptozotocin (HFD-GI). Bone marrow-derived stem cells were collected from donor mice and differentiated/activated into M2 macrophages for intraperitoneal administration into HFD-GI mice. Results: M2 macrophage treatment abolished glucose intolerance independently of obesity. M2 macrophage administration increased IL-10 in visceral adipose tissue and serum, but showed no effect on serum insulin. While nitric oxide synthase-2 and arginase-1 remained unaltered, M2 macrophage treatment restored AKT phosphorylation in visceral adipose tissue. Conclusion: M2 macrophage treatment abolishes glucose intolerance by increasing IL-10 and phosphorylated AKT.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Immunotherapy/methods , Interleukin-10/metabolism , Macrophages/immunology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Diabetes Mellitus, Type 2/immunology , Diet, High-Fat , Disease Models, Animal , Glucose Intolerance , Humans , Insulin Resistance , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Streptozocin , Th2 Cells/immunology
11.
Article in English | MEDLINE | ID: mdl-31137569

ABSTRACT

Bisphenol A (BPA) is an endocrine disruptor of estrogenic nature. During the early stages of development, any exposure to BPA can have long-term effects. In this work, we study the potential alterations to the humoral antitumor immune (IgM) response in adult life after a single neonatal exposure to BPA. Female syngeneic BALB/c mice were exposed to a single dose of BPA of 250 µg/kg. Once sexual maturity was reached, a breast tumor was induced. After 25 days, the serum was obtained, and the populations of B cells in the spleen and lymph nodes were analyzed by flow cytometry. The reactivity of IgM was evaluated by 2D immunoblots. No significant changes were found in the B cell populations in the peripheral lymph nodes and the spleen. The level of ERα expression was not significantly different. However, the IgM reactivity was affected. In individuals treated with BPA, a decrease in the number of IgMs that recognize tumor antigens was observed. The possibility that these antibodies are the high affinity products of the adaptive response is discussed. The recognition of IgG was also evaluated but a null recognition was found in the controls as in the individuals treated with the 4T1 cells.


Subject(s)
Benzhydryl Compounds/pharmacology , Endocrine Disruptors/pharmacology , Environmental Exposure , Immunity, Humoral , Immunoglobulin M/biosynthesis , Mammary Neoplasms, Experimental/immunology , Phenols/pharmacology , Animals , Cell Line, Tumor , Estrogen Receptor alpha/metabolism , Female , Mice , Mice, Inbred BALB C , Spleen/drug effects
12.
Biosci Rep ; 38(4)2018 08 31.
Article in English | MEDLINE | ID: mdl-29921576

ABSTRACT

Toxocariasis is a zoonotic disease produced by ingestion of larval Toxocara spp. eggs. Prolactin (PRL) has been considered to have an important role in Toxocara canis infection. Recent evidence has found that PRL directly can increase parasite growth and differentiation of T. canis The present study, evaluated the effect of high PRL levels on the immune system's response and parasites clearance in chronic infection. Our results showed that hyperprolactinemia did not affect the number of larvae recovered from several tissues in rats. Parasite-specific antibody production, showed no difference between the groups. Lung tissue presented eosinophilic granulomas typical of a chronic infection in all the experimental groups. Flow cytometry analysis was made in order to determine changes in the percentage of innate and adaptive immune cell subpopulations in the spleen, peripheric (PLN) and mesenteric (MLN) lymphatic nodes. The results showed a differential effect of PRL and infection on different immune compartments in the percent of total T cells, T helper cells, T cytotoxic cells, B cells, NK cells, and Tγδ cells. To our knowledge, for the first time it is demonstrated that PRL can have an immunomodulatory role during T. canis chronic infection in the murine host.


Subject(s)
Prolactin/immunology , Toxocara canis/immunology , Toxocariasis/immunology , Adaptive Immunity , Animals , Host-Parasite Interactions , Immunity, Innate , Larva/immunology , Lung/immunology , Lung/parasitology , Lung/pathology , Male , Prolactin/analysis , Rats, Wistar , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , T-Lymphocytes/pathology , Toxocara canis/physiology , Toxocariasis/blood , Toxocariasis/pathology , Zoonoses/blood , Zoonoses/immunology , Zoonoses/pathology
13.
Steroids ; 126: 7-14, 2017 10.
Article in English | MEDLINE | ID: mdl-28827046

ABSTRACT

Estradiol (E2), in addition to its known hormone function, is a neuroactive steroid that has shown neuroprotective profile in several models of neurological diseases. The present study explores the antioxidant effect of ß-estradiol-3-benzoate (EB) on the neurotoxicity elicited by MPP+ in rat striatum. Male Wistar rats, that were gonadectomized 30days prior to EB, were given 100µgEB per rat every 48h for 11days and animals were infused with MPP+ via intrastriatal at day six after beginning EB treatment. EB treatment completely prevented the fall in dopamine caused by MPP+, such result was related with decreased lipid peroxidation, a marker of oxidative stress; diminished number of ipsilateral-to-lesion turns and increased signal of the dopamine-synthesizing enzyme Tyrosin Hydroxylase in substantia nigra. The protection elicited by EB was not related to Mn or Cu-Zn superoxide dismutase enzymatic activities or glutathione modulation since none of these parameters were influenced by EB at the times assayed. Whereas, increased expression of PON2 as a result of EB treatment was observed, this phenomenon could be one of the mechanism by which the steroid conferred protection to dopaminergic cells against MPP+ injury.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Estradiol/analogs & derivatives , Lipid Peroxidation/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/etiology , Parkinson Disease/metabolism , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dose-Response Relationship, Drug , Estradiol/pharmacology , Male , Neostriatum/drug effects , Neostriatum/metabolism , Parkinson Disease/pathology , Rats , Rats, Wistar
14.
Oncol Lett ; 13(1): 271-274, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28123554

ABSTRACT

The issue of antibody responses to tumors is potentially important to cancer immunologists. Early detection of cancer represents one of the most promising approaches to reduce the growing cancer burden. Natural immunoglobulin (Ig)M antibodies have been associated with the recognition and elimination of cancerous and precancerous cells. Using natural IgM antibodies, the present study identified a set of antigens in healthy mice from three different strains and examined whether the global patterns of antibodies are able to discriminate between a condition of more or less susceptibility to breast cancer. The current study performed two-dimensional (2D) immunoblotting to detect antigens from 4T1 cells using natural IgM from serum of healthy female mice from three different strains. The t-test was used to analyze the total number of spots. There were no significant differences in the numbers of antigens recognized in each strain. However, differences in patterns were observed on 2D immunoblots among the three strains. The reactivity patterns of natural IgM antibodies to particular antigens exhibited non-random clustering, which discriminated between strains with different susceptibilities to spontaneous breast cancer. The results demonstrated that the patterns of reactivity to defined subsets of antigens are able to provide information regarding differential diagnosis associated with breast cancer sensitivity. Therefore, it may be concluded that it is possible to segregate the IgM humoral immune response toward cancer antigens according to the genetic background of individuals. In addition, it is possible to identify the recognized antigens that allow grouping or discriminate between the different IgM antibodies expressed. The possible association between a particular antigen and cancer susceptibility requires further study, but the methodology exposed in the present study may identify potential candidates for this possible association.

15.
Oncol Rep ; 34(3): 1106-14, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26133558

ABSTRACT

For early detection of cancer, education and screening are important, but the most critical factor is the development of early diagnostic tools. Methods that recognize the warning signs of cancer and take prompt action lead to an early diagnosis; simple tests can identify individuals in a healthy population who have the disease but have not developed symptoms. Early detection of cancer is significant and is one of the most promising approaches by which to reduce the growing cancer burden and guide curative treatment. The early diagnosis of patients with breast cancer is challenging, since it is the most common cancer in women worldwide. Despite the advent of mammography in screening for breast cancer, low-resource, low-cost alternative tools must be implemented to complement mammography findings. IgM is part of the first line of defense of an organism and is responsible for recognizing and eliminating infectious particles and removing transformed cells. Most studies on breast cancer have focused on the development of IgG-like molecules as biomarkers or as a treatment for the advanced stages of cancer, but autoantibodies (IgM) and tumor-associated antigens (proteins or carbohydrates with aberrant structures) have not been examined as early diagnostic tools for breast cancer. The present review summarizes the function of natural and adaptive IgM in eliminating cancer cells in the early stages of pathology and their value as early diagnostic tools. IgM, as a component of the immune system, is being used to identify tumor-associated antigens and tumor-associated carbohydrate antigens.


Subject(s)
Antibodies, Neoplasm/immunology , Antigens, Neoplasm/immunology , Biomarkers, Tumor/immunology , Breast Neoplasms/immunology , Immunoglobulin M/immunology , Autoantibodies/immunology , Early Detection of Cancer/methods , Female , Humans
16.
PLoS One ; 10(6): e0127928, 2015.
Article in English | MEDLINE | ID: mdl-26076446

ABSTRACT

The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.


Subject(s)
Androgens/pharmacology , Anthelmintics/pharmacology , Taenia/drug effects , Taenia/physiology , Actins/metabolism , Animals , Dihydrotestosterone/pharmacology , Female , Mice , Microscopy, Confocal , Myosins/metabolism , Protein Transport , Reproduction/drug effects , Testosterone/pharmacology , Tubulin/metabolism
17.
Immunobiology ; 220(9): 1050-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26026196

ABSTRACT

The early detection of cancer is one of the most promising approaches to reduce its growing burden and develop a curative treatment before the tumor is established. The early diagnosis of breast cancer is the most demanding of all tumors, because it is the most common cancer in women worldwide. We have described a new approach to analyze humoral immune reactions against 4 T1 cell antigens in female mice, reporting that the IgG and IgM responses differed and varied over time and between individuals. In this study, we compared and analyzed the detection of tumor antigens with IgG and IgM from the sera of male mice that were injected with 4 T1 cells into the mammary gland nipple in 2D immunoblot images. The variability in IgM and IgG responses in female and male mice with breast cancer at various stages of disease was characterized, and the properties with regard to antigen recognition were correlated statistically with variables that were associated with the individuals and tumors. The ensuing IgG and IgM responses differed. Only the IgG response decreased over time in female mice--not in male mice. The IgM response was maintained during tumor development in both sexes. Each mouse had a specific pattern of antigen recognition--ie, an immunological signature--represented by a unique set of antigen spots that were recognized by IgM or IgG. These data would support that rationale IgM is a better tool for early diagnosis, because it is not subject to immunosuppression like IgG in female mice with breast cancer.


Subject(s)
Antigens, Neoplasm/immunology , Breast Neoplasms/diagnosis , Early Detection of Cancer/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Animals , Antigens, Neoplasm/blood , Breast Neoplasms/immunology , Cell Line, Tumor , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Immunity, Humoral/immunology , Immunoblotting , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Sex Factors
18.
PLoS One ; 10(3): e0119014, 2015.
Article in English | MEDLINE | ID: mdl-25781932

ABSTRACT

The Immunoglobulin G (IgG) antibody response to different protein antigens of the mammary ductal carcinoma by adult women affected by Breast Cancer (BC) distinguishes at least 103 proteins that differ in their molecular weights (MW). The IgG producing cell clones (nodes) coexist with each other in each individual organism and share energy resources among themselves, as well as factors that control the level of expression and Specificity of their IgG antibodies. So, it can be proposed that among them there is a Network of interconnections (links) unveiled by the antigens, which specifically react with the IgG antibodies produced by the clones. This Network possibly regulates IgG antibodies' activity and effectiveness. We describe the Network of nodes and links that exists between the different antigens and their respective IgG producing cell clones against the extracted protein antigens from the cells of the T47D Cell-Line, in 50 women with BC, 50 women with Benign Breast Pathology (BBP) and 50 women without breast pathology (H). We have found that women with BBP have the highest number of Links, followed by the H group and, lastly, the women with BC, a finding which suggests that cancer interferes with the Connectivity between the IgG producing cell clones and blocks the expression of 322 links in women with BBP and 32 links in women with H. It is also plausible that the largest number of links in the women with BBP indicates the Network's state of arousal that provides protection against BC. On the other hand, there were many missing links in the BC group of women; the clone which lost more links in the BC group was the hub 24, which point to some of the antigens of T47D as potentially useful as vaccines, as the immune system of women with BBP is well aware of them.


Subject(s)
Antigen-Antibody Reactions/immunology , Antigens, Neoplasm/immunology , Breast Neoplasms/immunology , Breast/immunology , Gene Regulatory Networks , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Adolescent , Adult , Aged , Biomarkers, Tumor/analysis , Breast/pathology , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/immunology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/immunology , Carcinoma, Lobular/pathology , Case-Control Studies , Female , Follow-Up Studies , Humans , Middle Aged , Neoplasm Staging , Prognosis , Young Adult
19.
J Interferon Cytokine Res ; 35(1): 1-16, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25068787

ABSTRACT

Cytokines are highly inducible, secretory proteins that mediate intercellular communication in the immune system. They are grouped into several protein families that are referred to as tumor necrosis factors, interleukins, interferons, and colony-stimulating factors. In recent years, it has become clear that some of these proteins as well as their receptors are produced in the organisms under physiological and pathological conditions. The exact initiation process of breast cancer is unknown, although several hypotheses have emerged. Inflammation has been proposed as an important player in tumor initiation, promotion, angiogenesis, and metastasis, all phenomena in which cytokines are prominent players. The data here suggest that cytokines play an important role in the regulation of both induction and protection in breast cancer. This knowledge could be fundamental for the proposal of new therapeutic approaches to particularly breast cancer and other cancer-related disorders.


Subject(s)
Adipokines/immunology , Breast Neoplasms/immunology , Cell Transformation, Neoplastic/pathology , Cytokines/immunology , Tumor Escape/immunology , Disease Progression , Female , Humans , Immune Tolerance/immunology , Inflammation/immunology , Neovascularization, Pathologic/immunology , Prognosis , Quality of Life
20.
Int J Parasitol ; 44(10): 687-96, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24879953

ABSTRACT

We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.


Subject(s)
Cytoskeletal Proteins/metabolism , Estradiol/pharmacology , Gene Expression Regulation/drug effects , Progesterone/pharmacology , Taenia/classification , Taenia/cytology , Animals , Cells, Cultured , Cytoskeletal Proteins/genetics , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...