Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 10(11)2017 Oct 26.
Article in English | MEDLINE | ID: mdl-29072632

ABSTRACT

The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young's modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.

2.
Materials (Basel) ; 9(3)2016 Feb 26.
Article in English | MEDLINE | ID: mdl-28773261

ABSTRACT

The nanomechanical properties of carbon nanotubes particulate-reinforced aluminum matrix nanocomposites (Al-CNTs) have been characterized using nanoindentation. Bulk nanocomposite specimens containing 2 wt % multiwalled CNTs (MWCNTs) were synthesized by a combination of ball milling and powder metallurgy route. It has been tried to understand the correlation between microstructural evolution particularly carbon nanotubes (CNTs) dispersion during milling and mechanical properties of Al-2 wt % nanocomposites. Maximum enhancement of +23% and +44% has been found in Young's modulus and hardness respectively, owing to well homogenous dispersion of CNTs within the aluminum matrix at longer milling time.

SELECTION OF CITATIONS
SEARCH DETAIL
...