Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 4): 127091, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37758113

ABSTRACT

Brain cancer is the major reason of cancer-relevant deaths every year, as it is the most challenging cancer to treat and drug delivery. Quercetin (QUR), as a flavonoid substance found in plants and fruits, has good anticancer and medicinal effects on brain tumors, but its low stability and bioavailability as well as the blood-brain barrier (BBB), prevent it from reaching brain tumors. This research has introduced a nanocomposite made of biocompatible polymers, chitosan, and carboxymethyl cellulose. This co- biopolymer's mechanical and chemical properties and drug-loading capacity have been improved by adding zinc oxide nanoparticles (ZnO NPs). In addition, graphene quantum dots (GQDs) were used to improve the chemical properties as well as the ability to penetrate the BBB. The CS/CMC/GQDs/ZnO@QUR nanocomposites have nanoneedle structures with an average size of 219.38 ± 5.21 nm and a zeta potential of -53 mV. The morphology, chemical bonds, and crystallinity of the nanocomposite were examined by FE-SEM, FTIR, and XRD analyses, respectively. By examining the release of QUR, it became apparent that the half-drug release takes about 72 h, which has a much more controlled release than other QUR carriers. Further, the MTT test on U-87 MG and L929 cell lines suggested that this nanocomposite has good anticancer properties and low cytotoxicity compared to the free QUR.


Subject(s)
Brain Neoplasms , Chitosan , Graphite , Nanocomposites , Nanoparticles , Quantum Dots , Zinc Oxide , Humans , Hydrogels/chemistry , Quantum Dots/chemistry , Zinc Oxide/chemistry , Chitosan/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Carboxymethylcellulose Sodium/chemistry , Graphite/chemistry , Nanoparticles/chemistry , Nanocomposites/chemistry , Hydrogen-Ion Concentration
2.
Int J Biol Macromol ; 242(Pt 3): 124986, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37230449

ABSTRACT

Curcumin (CUR) is among the most appropriate and natural-based anticancer drugs that can be applied effectively treat different classes of cancers. However, CUR suffers from a low half-life and stability in the body, which has restricted the efficacy of its delivery applications. This study is dedicated to introducing the pH-sensitive nanocomposite of chitosan (CS)/gelatin (GE)/carbon quantum dots (CQDs) as an applicable nanocarrier for enhancing CUR half-life and its delivery restrictions. The CS/GE hydrogel was synthesized by the physical crosslinking method, which improves the biocompatibility of this hydrogel. Moreover, the water-in-oil-in-water (W/O/W) double emulsion approach is involved in fabricating the drug-loaded CS/GE/CQDs@CUR nanocomposite. Afterward, drug encapsulation (EE) and loading efficiencies (LE) have been determined. Furthermore, FTIR and XRD assessments were performed to confirm the CUR incorporation into the prepared nanocarrier and crystalline features of the nanoparticles. Then, by employing Zeta potential and dynamic light scattering (DLS) analysis, the size distribution and stability of the drug-loaded nanocomposites have been assessed, which indicated monodisperse and stable nanoparticles. Furthermore, field emission scanning electron microscopy (FE-SEM) was utilized that confirmed the homogeneous distribution of the nanoparticles with smooth and quite spherical structures. In vitro drug release pattern was studied and the kinetic analysis was performed using a curve fitting technique to determine the governing release mechanism at both acidic pH and physiological conditions. The obtained outcomes from release data revealed a controlled release behavior with a 22-hour half-life, while the EE% and EL% were acquired at 46.75 % and 87.5 %, respectively. In addition, the MTT assay has been carried out on U-87 MG cell lines to evaluate the cytotoxicity of the nanocomposite. The findings showed that the fabricated nanocomposite of CS/GE/CQDs can be assumed as a biocompatible CUR nanocarrier, while the drug-loaded nanocomposite of CS/GE/CQDs@CUR showed enhanced cytotoxicity compared to the pure CUR. Based on the obtained results, this study suggests the CS/GE/CQDs nanocomposite as a biocompatible and potential nanocarrier for ameliorating CUR delivery restrictions to treat brain cancers.


Subject(s)
Brain Neoplasms , Chitosan , Curcumin , Nanocomposites , Quantum Dots , Humans , Curcumin/pharmacology , Curcumin/chemistry , Chitosan/chemistry , Gelatin , Carbon , Kinetics , Nanocomposites/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...