Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38328167

ABSTRACT

Ubiquitin is a small, highly conserved protein that acts as a posttranslational modification in eukaryotes. Ubiquitination of proteins frequently serves as a degradation signal, marking them for disposal by the proteasome. Here, we report a novel small molecule from a diversity-oriented synthesis library, BRD1732, that is directly ubiquitinated in cells, resulting in dramatic accumulation of inactive ubiquitin monomers and polyubiquitin chains causing broad inhibition of the ubiquitin-proteasome system. Ubiquitination of BRD1732 and its associated cytotoxicity are stereospecific and dependent upon two homologous E3 ubiquitin ligases, RNF19A and RNF19B. Our finding opens the possibility for indirect ubiquitination of a target through a ubiquitinated bifunctional small molecule, and more broadly raises the potential for posttranslational modification in trans.

2.
J Am Chem Soc ; 145(42): 23281-23291, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37816014

ABSTRACT

The hallmark of a molecular glue is its ability to induce cooperative protein-protein interactions, leading to the formation of a ternary complex, despite weaker binding toward one or both individual proteins. Notably, the extent of cooperativity distinguishes molecular glues from bifunctional compounds, which constitute a second class of inducers of protein-protein interactions. However, apart from serendipitous discovery, there have been limited rational screening strategies for the high cooperativity exhibited by molecular glues. Here, we propose a binding-based screen of DNA-barcoded compounds on a target protein in the presence or absence of a presenter protein, using the "presenter ratio", the ratio of ternary enrichment to binary enrichment, as a predictive measure of cooperativity. Through this approach, we identified a range of cooperative, noncooperative, and uncooperative compounds in a single DNA-encoded library screen with bromodomain containing protein (BRD)9 and the VHL-elongin C-elongin B (VCB) complex. Our most cooperative hit compound, 13-7, exhibits micromolar binding affinity to BRD9 but nanomolar affinity for the ternary complex with BRD9 and VCB, with cooperativity comparable to classical molecular glues. This approach may enable the rational discovery of molecular glues for preselected proteins and thus facilitate the transition to a new paradigm of small-molecule therapeutics.


Subject(s)
DNA , Proteins , Binding Sites , Protein Domains
3.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292909

ABSTRACT

The hallmark of a molecular glue is its ability to induce cooperative protein-protein interactions, leading to the formation of a ternary complex, despite weaker binding towards one or both individual proteins. Notably, the extent of cooperativity distinguishes molecular glues from bifunctional compounds, a second class of inducers of protein-protein interactions. However, apart from serendipitous discovery, there have been limited rational screening strategies for the high cooperativity exhibited by molecular glues. Here, we propose a binding-based screen of DNA-barcoded compounds on a target protein in the presence and absence of a presenter protein, using the "presenter ratio", the ratio of ternary enrichment to binary enrichment, as a predictive measure of cooperativity. Through this approach, we identified a range of cooperative, noncooperative, and uncooperative compounds in a single DNA-encoded library screen with bromodomain (BRD)9 and the VHL-elongin C-elongin B (VCB) complex. Our most cooperative hit compound, 13-7 , exhibits micromolar binding affinity to BRD9 but nanomolar affinity for the ternary complex with BRD9 and VCB, with cooperativity comparable to classical molecular glues. This approach may enable the discovery of molecular glues for pre-selected proteins and thus facilitate the transition to a new paradigm of molecular therapeutics.

4.
Nat Rev Drug Discov ; 15(11): 771-785, 2016 11.
Article in English | MEDLINE | ID: mdl-27469033

ABSTRACT

KRAS is the most frequently mutated oncogene in human cancer. In addition to holding this distinction, unsuccessful attempts to target this protein have led to the characterization of RAS as 'undruggable'. However, recent advances in technology and novel approaches to drug discovery have renewed hope that a direct KRAS inhibitor may be on the horizon. In this Review, we provide an in-depth analysis of the structure, dynamics, mutational activation and inactivation, and signalling mechanisms of RAS. From this perspective, we then consider potential mechanisms of action for effective RAS inhibitors. Finally, we examine each of the many recent reports of direct RAS inhibitors and discuss promising avenues for further development.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Drug Design , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Animals , Antineoplastic Agents/metabolism , Humans , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
5.
Elife ; 3: e03351, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25272277

ABSTRACT

Cytoplasmic dynein, a microtubule-based motor protein, transports many intracellular cargos by means of its light intermediate chain (LIC). In this study, we have determined the crystal structure of the conserved LIC domain, which binds the motor heavy chain, from a thermophilic fungus. We show that the LIC has a Ras-like fold with insertions that distinguish it from Ras and other previously described G proteins. Despite having a G protein fold, the fungal LIC has lost its ability to bind nucleotide, while the human LIC1 binds GDP preferentially over GTP. We show that the LIC G domain binds the dynein heavy chain using a conserved patch of aromatic residues, whereas the less conserved C-terminal domain binds several Rab effectors involved in membrane transport. These studies provide the first structural information and insight into the evolutionary origin of the LIC as well as revealing how this critical subunit connects the dynein motor to cargo.


Subject(s)
Cytoplasmic Dyneins/chemistry , Cytoplasmic Dyneins/metabolism , ras Proteins/chemistry , Amino Acid Sequence , Animals , Binding Sites , Conserved Sequence , Crystallography, X-Ray , HEK293 Cells , Humans , Models, Molecular , Molecular Sequence Data , Nucleotides/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Sus scrofa , rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/metabolism , ras Proteins/metabolism
6.
Nature ; 503(7477): 548-51, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24256730

ABSTRACT

Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner.


Subject(s)
Allosteric Site/drug effects , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/metabolism , Oncogene Protein p21(ras)/antagonists & inhibitors , Oncogene Protein p21(ras)/metabolism , Allosteric Regulation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Cysteine/genetics , Cysteine/metabolism , Drug Discovery , Genes, ras/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Models, Molecular , Mutant Proteins/genetics , Oncogene Protein p21(ras)/genetics , Static Electricity , Substrate Specificity , raf Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...