Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 10(2): 657-665, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29239447

ABSTRACT

The immobilization of proteins on carbon nanotubes (CNTs) has been widely reported mainly for the preparation of sensors while the conjugation of enzymes for therapeutic purposes has scarcely been considered. Herein we report, to the best of our knowledge, the first example of intracellular delivery of a therapeutic enzyme by means of CNTs, retaining its activity. Mucopolysaccharidosis I is a rare genetic disease characterized by the deficiency or absence of the activity of the α-l-iduronidase (IDUA) enzyme. We evaluated the capacity of the recombinant form of the human IDUA enzyme, laronidase (Aldurazyme®), conjugated with CNTs to be internalized by fibroblasts from subjects affected with Mucopolysaccharidosis type I and the capacity of the enzyme to retain its activity after internalization. The enzyme was successfully delivered into the lysosomal space and the enzymatic activity of the conjugate was preserved after internalization up to 48 hours. This paves the way towards the use of such a kind of construct for therapeutic applications.


Subject(s)
Drug Carriers , Iduronidase/administration & dosage , Mucopolysaccharidosis I/drug therapy , Nanotubes, Carbon , Cells, Cultured , Fibroblasts/drug effects , Humans , Recombinant Proteins/administration & dosage , Skin/cytology
2.
J Mater Chem B ; 5(32): 6681-6687, 2017 Aug 28.
Article in English | MEDLINE | ID: mdl-32264431

ABSTRACT

Prostate-specific membrane antigen (PSMA), a glycoprotein expressed in the prostatic epithelium endowed with enzymatic activity, is a very promising diagnostic marker for the early detection of prostate cancer. In this study, we report a novel electrochemiluminescence ELISA-like immunosensor based on carbon nanotubes and a highly specific sandwich immunoassay for the PSMA detection. To fabricate the device, an optically transparent electrode was modified with doubly functionalized multi-walled carbon nanotubes carrying amine groups and a monoclonal anti-PSMA antibody. Subsequently, to complete the sandwich immunosensing device, a second specific monoclonal anti-PSMA antibody was labelled with a electrochemiluminescent probe. Under optimized experimental conditions, the proposed sensing device exhibits a performance exceeding that of the state of-the-art in terms of the limit of detection (LOD) and limit of quantification (LOQ) as good as 0.88 ng mL-1 and 2.60 ng mL-1, respectively, in real complex samples such as cell lysates. In addition, the unique role of carbon nanotubes is also discussed by comparison with an analogue sensor assembled without the nanocarbon-based material.

3.
Bioorg Med Chem ; 22(17): 4792-802, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25074848

ABSTRACT

New structurally simple indolic non peptidic HIV Protease inhibitors were synthesized from (S)-glycidol by regioselective methods. Following the concept of targeting the protein backbone, different substitution patterns were introduced onto the common stereodefined isopropanolamine core modifying the type of functional group on the indole, the position of the functional group on the indole and the type of the nitrogen containing group (sulfonamides or perhydroisoquinoline), alternatively. The systematic study on in vitro inhibition activity of such compounds confirmed the general beneficial effect of the 5-indolyl substituents in presence of arylsulfonamide moieties, which furnished activities in the micromolar range. Preliminary docking analysis allowed to identify several key features of the binding mode of such compounds to the protease.


Subject(s)
HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease/metabolism , Indoles/chemistry , Indoles/pharmacology , Dose-Response Relationship, Drug , HIV Protease Inhibitors/chemical synthesis , Indoles/chemical synthesis , Models, Molecular , Molecular Structure , Peptides , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...