Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 1(1): pgab005, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36712807

ABSTRACT

Lumbar lordosis is a key adaptation to bipedal locomotion in the human lineage. Dorsoventral spinal curvatures enable the body's center of mass to be positioned above the hip, knee, and ankle joints, and minimize the muscular effort required for postural control and locomotion. Previous studies have suggested that Neandertals had less lordotic (ventrally convex) lumbar columns than modern humans, which contributed to historical perceptions of postural and locomotor differences between the two groups. Quantifying lower back curvature in extinct hominins is entirely reliant upon bony correlates of overall lordosis, since the latter is significantly influenced by soft tissue structures (e.g. intervertebral discs). Here, we investigate sexual dimorphism, ancestry, and lifestyle effects on lumbar vertebral body wedging and inferior articular facet angulation, two features previously shown to be significantly correlated with overall lordosis in living individuals, in a large sample of modern humans and Neandertals. Our results demonstrate significant differences between postindustrial cadaveric remains and archaeological samples of people that lived preindustrial lifestyles. We suggest these differences are related to activity and other aspects of lifestyle rather than innate population (ancestry) differences. Neandertal bony correlates of lumbar lordosis are significantly different from all human samples except preindustrial males. Therefore, although Neandertals demonstrate more bony kyphotic wedging than most modern humans, we cast doubt on proposed locomotor and postural differences between the two lineages based on inferred lumbar lordosis (or lack thereof), and we recommend future research compare fossils to modern humans from varied populations and not just recent, postindustrial samples.

2.
Elife ; 102021 11 23.
Article in English | MEDLINE | ID: mdl-34812141

ABSTRACT

Adaptations of the lower back to bipedalism are frequently discussed but infrequently demonstrated in early fossil hominins. Newly discovered lumbar vertebrae contribute to a near-complete lower back of Malapa Hominin 2 (MH2), offering additional insights into posture and locomotion in Australopithecus sediba. We show that MH2 possessed a lower back consistent with lumbar lordosis and other adaptations to bipedalism, including an increase in the width of intervertebral articular facets from the upper to lower lumbar column ('pyramidal configuration'). These results contrast with some recent work on lordosis in fossil hominins, where MH2 was argued to demonstrate no appreciable lordosis ('hypolordosis') similar to Neandertals. Our three-dimensional geometric morphometric (3D GM) analyses show that MH2's nearly complete middle lumbar vertebra is human-like in overall shape but its vertebral body is somewhat intermediate in shape between modern humans and great apes. Additionally, it bears long, cranially and ventrally oriented costal (transverse) processes, implying powerful trunk musculature. We interpret this combination of features to indicate that A. sediba used its lower back in both bipedal and arboreal positional behaviors, as previously suggested based on multiple lines of evidence from other parts of the skeleton and reconstructed paleobiology of A. sediba.


One of the defining features of humans is our ability to walk comfortably on two legs. To achieve this, our skeletons have evolved certain physical characteristics. For example, the lower part of the human spine has a forward curve that supports an upright posture; whereas the lower backs of chimpanzees and other apes ­ which walk around on four limbs and spend much of their time in trees ­ lack this curvature. Studying the fossilized back bones of ancient human remains can help us to understand how we evolved these features, and whether our ancestors moved in a similar way. Australopithecus sediba was a close-relative of modern humans that lived about two million years ago. In 2008, fossils from an adult female were discovered at a cave site in South Africa called Malapa. However, the fossils of the lower back region were incomplete, so it was unclear whether the female ­ referred to as Malapa Hominin 2 (MH2) ­ had a forward-curving spine and other adaptations needed to walk on two legs. Here, Williams et al. report the discovery of new A. sediba fossils from Malapa. The new fossils are mainly bones from the lower back, and they fit together with the previously discovered MH2 fossils, providing a nearly complete lower spine. Analysis of the fossils suggested that MH2 would have had an upright posture and comfortably walked on two legs, and the curvature of their lower back was similar to modern females. However, other aspects of the bones' shape suggest that as well as walking, A. sediba probably spent a significant amount of time climbing in trees. The findings of Williams et al. provide new insights in to our evolutionary history, and ultimately, our place in the natural world around us. Our lower back is prone to injury and pain associated with posture, pregnancy and exercise (or lack thereof). Therefore, understanding how the lower back evolved may help us to learn how to prevent injuries and maintain a healthy back.


Subject(s)
Back/anatomy & histology , Fossils/anatomy & histology , Hominidae/anatomy & histology , Animals , Female , Hominidae/physiology , Locomotion , Posture
3.
Am J Phys Anthropol ; 173(1): 3-20, 2020 09.
Article in English | MEDLINE | ID: mdl-32274796

ABSTRACT

OBJECTIVES: Availability of fruit is an important factor influencing variation in great ape foraging strategies and activity patterns. This study aims to quantify how frugivory influences activity budgets across age-sex classes of mountain gorillas in Bwindi Impenetrable National Park, Uganda. MATERIALS AND METHODS: Daily proportions of fruit-feeding and activity budgets were calculated using 6 years of observational data on four habituated groups. We fitted generalized linear mixed models to test for age-sex differences in the amount of fruit-feeding, and to test whether these factors influence the proportion of time spent feeding, resting, and traveling. RESULTS: Bwindi mountain gorillas spent on average 15% of feeding time consuming fruit, with monthly variation ranging from 0 to 70%. Greater amounts of fruit-feeding were associated with more time feeding and traveling, and less time resting. Immatures tended to spend more feeding time on fruit than adults, but less overall time feeding and more time traveling. There were no significant differences in the amount of fruit-feeding and overall feeding time between adult females and silverback males, despite differences in body size. DISCUSSION: This study confirms that gorillas are frugivorous, and only the Virunga mountain gorilla population can be characterized as highly folivorous. Along with other frugivorous great apes, Bwindi mountain gorillas alter their activity patterns in response to varying amounts of fruit in their diet. A better understanding of how variable ecological conditions can drive diversity even within a subspecies has important implications for understanding relationships between ecology, body size, and foraging strategies in great apes.


Subject(s)
Diet , Feeding Behavior/physiology , Fruit , Gorilla gorilla/physiology , Animals , Anthropology, Physical , Female , Male , Uganda
4.
J Hum Evol ; 122: 70-83, 2018 09.
Article in English | MEDLINE | ID: mdl-29970233

ABSTRACT

The ecological and selective forces that sparked the emergence of Homo's adaptive strategy remain poorly understood. New fossil and archaeological finds call into question previous interpretations of the grade shift that drove our ancestors' evolutionary split from the australopiths. Furthermore, issues of taphonomy and scale have limited reconstructions of the hominin habitats and faunal communities that define the environmental context of these behavioral changes. The multiple ∼1.5 Ma track surfaces from the Okote Member of the Koobi Fora Formation at East Turkana provide unique windows for examining hominin interactions with the paleoenvironment and associated faunas at high spatiotemporal resolution. These surfaces preserve the tracks of many animals, including cf. Homo erectus. Here, we examine the structure of the animal community that inhabited this landscape, considering effects of preservation bias by comparing the composition of the track assemblage to a skeletal assemblage from the same time and place. We find that the track and skeletal assemblages are similar in their representation of the vertebrate paleocommunity, with comparable levels of taxonomic richness and diversity. Evenness (equitability of the number of individuals per taxon) differs between the two assemblages due to the very different circumstances of body fossil versus track preservation. Both samples represent diverse groups of taxa including numerous water-dependent species, consistent with geological interpretations of the track site environments. Comparisons of these assemblages also show a pattern of non-random hominin association with a marginal lacustrine habitat relative to other vertebrates in the track assemblage. This evidence is consistent with behavior that included access to aquatic foods and possibly hunting by H. erectus in lake margins/edaphic grasslands. Such behaviors may signal the emergence of the adaptative strategies that define our genus.


Subject(s)
Archaeology , Biota , Birds , Fossils , Mammals , Reptiles , Animals , Hominidae , Kenya , Life History Traits , Paleontology
5.
Am J Phys Anthropol ; 166(1): 84-94, 2018 05.
Article in English | MEDLINE | ID: mdl-29344933

ABSTRACT

OBJECTIVES: Gorillas, along with chimpanzees and bonobos, are ubiquitously described as 'knuckle-walkers.' Consequently, knuckle-walking (KW) has been featured pre-eminently in hypotheses of the pre-bipedal locomotor behavior of hominins and in the evolution of locomotor behavior in apes. However, anecdotal and behavioral accounts suggest that mountain gorillas may utilize a more complex repertoire of hand postures, which could alter current interpretations of African ape locomotion and its role in the emergence of human bipedalism. Here we documented hand postures during terrestrial locomotion in wild mountain gorillas to investigate the frequency with which KW and other hand postures are utilized in the wild. MATERIALS AND METHODS: Multiple high-speed cameras were used to record bouts of terrestrial locomotion of 77 habituated mountain gorillas at Bwindi Impenetrable National Park (Uganda) and Volcanoes National Park (Rwanda). RESULTS: We captured high-speed video of hand contacts in 8% of the world's population of mountain gorillas. Our results reveal that nearly 40% of these gorillas used "non-KW" hand postures, and these hand postures constituted 15% of all hand contacts. Some of these "non-KW" hand postures have never been documented in gorillas, yet match hand postures previously identified in orangutans. DISCUSSION: These results highlight a previously unrecognized level of hand postural diversity in gorillas, and perhaps great apes generally. Although present at lower frequencies than KW, we suggest that the possession of multiple, versatile hand postures present in wild mountain gorillas may represent a shared feature of the African ape and human clade (or even great ape clade) rather than KW per se.


Subject(s)
Gorilla gorilla/physiology , Hand/physiology , Posture/physiology , Walking/physiology , Animals , Anthropology, Physical , Biological Evolution , Female , Male , Rwanda , Uganda , Video Recording
6.
J Hum Evol ; 112: 93-104, 2017 11.
Article in English | MEDLINE | ID: mdl-28917702

ABSTRACT

Tracks can provide unique, direct records of behaviors of fossil organisms moving across their landscapes millions of years ago. While track discoveries have been rare in the human fossil record, over the last decade our team has uncovered multiple sediment surfaces within the Okote Member of the Koobi Fora Formation near Ileret, Kenya that contain large assemblages of ∼1.5 Ma fossil hominin tracks. Here, we provide detailed information on the context and nature of each of these discoveries, and we outline the specific data that are preserved on the Ileret hominin track surfaces. We analyze previously unpublished data to refine and expand upon earlier hypotheses regarding implications for hominin anatomy and social behavior. While each of the track surfaces discovered at Ileret preserves a different amount of data that must be handled in particular ways, general patterns are evident. Overall, the analyses presented here support earlier interpretations of the ∼1.5 Ma Ileret track assemblages, providing further evidence of large, human-like body sizes and possibly evidence of a group composition that could support the emergence of certain human-like patterns of social behavior. These data, used in concert with other forms of paleontological and archaeological evidence that are deposited on different temporal scales, offer unique windows through which we can broaden our understanding of the paleobiology of hominins living in East Africa at ∼1.5 Ma.


Subject(s)
Fossils/anatomy & histology , Hominidae/anatomy & histology , Hominidae/physiology , Locomotion , Social Behavior , Animals , Archaeology , Biological Evolution , Kenya , Paleontology
7.
Sci Rep ; 6: 28766, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27403790

ABSTRACT

Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6-7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus.


Subject(s)
Foot/physiology , Fossils , Hominidae/physiology , Locomotion/physiology , Social Behavior , Animals , Biological Evolution , Biomechanical Phenomena/physiology , Body Size/physiology , Foot/anatomy & histology , Gait/physiology , Hominidae/anatomy & histology , Humans , Walking/physiology
8.
Sci Rep ; 6: 26374, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27199261

ABSTRACT

Reconstructing hominin paleoecology is critical for understanding our ancestors' diets, social organizations and interactions with other animals. Most paleoecological models lack fine-scale resolution due to fossil hominin scarcity and the time-averaged accumulation of faunal assemblages. Here we present data from 481 fossil tracks from northwestern Kenya, including 97 hominin footprints attributed to Homo erectus. These tracks are found in multiple sedimentary layers spanning approximately 20 thousand years. Taphonomic experiments show that each of these trackways represents minutes to no more than a few days in the lives of the individuals moving across these paleolandscapes. The geology and associated vertebrate fauna place these tracks in a deltaic setting, near a lakeshore bordered by open grasslands. Hominin footprints are disproportionately abundant in this lake margin environment, relative to hominin skeletal fossil frequency in the same deposits. Accounting for preservation bias, this abundance of hominin footprints indicates repeated use of lakeshore habitats by Homo erectus. Clusters of very large prints moving in the same direction further suggest these hominins traversed this lakeshore in multi-male groups. Such reliance on near water environments, and possibly aquatic-linked foods, may have influenced hominin foraging behavior and migratory routes across and out of Africa.


Subject(s)
Geologic Sediments/analysis , Hominidae/anatomy & histology , Animals , Archaeology , Body Size , Fossils , Hominidae/physiology , Humans , Kenya
9.
J Forensic Sci ; 60(1): 21-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25382679

ABSTRACT

Sex determination is critical for developing the biological profile of unidentified skeletal remains. When more commonly used elements (os coxa, cranium) for sexing are not available, methods utilizing other skeletal elements are needed. This study aims to assess the degree of sexual dimorphism of the lumbar vertebrae and develop discriminant functions for sex determination from them, using a sample of South African blacks from the Raymond A. Dart Collection (47 males, 51 females). Eleven variables at each lumbar level were subjected to univariate and multivariate discriminant function analyses. Univariate equations produced classification rates ranging from 57.7% to 83.5%, with the highest accuracies associated with dimensions of the vertebral body. Multivariate stepwise analysis generated classification rates ranging from 75.9% to 88.7%. These results are comparable to other methods for sexing the skeleton and indicate that measures of the lumbar vertebrae can be used as an effective tool for sex determination.


Subject(s)
Lumbar Vertebrae/anatomy & histology , Sex Determination by Skeleton/methods , Black People , Discriminant Analysis , Female , Forensic Anthropology , Humans , Male , South Africa , Zygapophyseal Joint/anatomy & histology
10.
Science ; 340(6129): 1232996, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23580532

ABSTRACT

Two partial vertebral columns of Australopithecus sediba grant insight into aspects of early hominin spinal mobility, lumbar curvature, vertebral formula, and transitional vertebra position. Au. sediba likely possessed five non-rib-bearing lumbar vertebrae and five sacral elements, the same configuration that occurs modally in modern humans. This finding contrasts with other interpretations of early hominin regional vertebral numbers. Importantly, the transitional vertebra is distinct from and above the last rib-bearing vertebra in Au. sediba, resulting in a functionally longer lower back. This configuration, along with a strongly wedged last lumbar vertebra and other indicators of lordotic posture, would have contributed to a highly flexible spine that is derived compared with earlier members of the genus Australopithecus and similar to that of the Nariokotome Homo erectus skeleton.


Subject(s)
Fossils , Hominidae/anatomy & histology , Spine/anatomy & histology , Animals , Biological Evolution , Biomechanical Phenomena , Cervical Vertebrae/anatomy & histology , Hominidae/physiology , Humans , Locomotion , Lumbar Vertebrae/anatomy & histology , Posture , Sacrum/anatomy & histology , South Africa , Spine/physiology , Thoracic Vertebrae/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...