Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38008834

ABSTRACT

Tingui biochar (TB) activated with potassium hydroxide (TB-KOH) was synthesized in the present study. The adsorption capacity of TB-KOH was evaluated for the removal of acetaminophen and caffeine in monocomponent and bicomponent solutions. As a result, the study of the TB-KOH characterization as well as the adsorption kinetics, isotherm, thermodynamics, and a suggestion of the global adsorption mechanism are presented. TB-KOH was characterized through physical-chemical analysis to understand its surface morphology and how it contributes to the adsorption of these drugs. Furthermore, modelling using advanced statistical physical models was performed to describe how acetaminophen and caffeine molecules are adsorbed in the active sites of TB-KOH. Through the characterizations, it was observed that the activation with KOH contributed to the development of porosity and functional groups (-OH, C-O, and C = O) on the surface of TB. The monocomponent adsorption equilibrium was reached in 90 min with a maximum adsorption capacity of 424.7 and 350.8 mg g-1 for acetaminophen and caffeine, respectively. For the bicomponent solution adsorption, the maximum adsorption capacity was 199.4 and 297.5 mg g-1 for acetaminophen and caffeine, respectively. The isotherm data was best fitted to the Sips model, and the thermodynamic study indicated that acetaminophen removal was endothermic, while caffeine removal was exothermic. The mechanism of adsorption of acetaminophen and caffeine by TB-KOH was described by the involvement of hydrogen bonds and π-π interactions between the surface of TB-KOH and the molecules of the contaminants.

2.
Environ Technol ; : 1-20, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37452562

ABSTRACT

In this work, the synthesis of activated carbon from the bark of the Magonia pubescens (known as Tingui) and its efficiency in the removal of diclofenac sodium through batch adsorption tests and physical-chemical characterizations were investigated. The phytotoxicity of this material was also evaluated through germination and root growth of Lactuca sativa seeds. According to the experimental design performed for the synthesis of Tingui carbon, the optimized temperature and residence time for the production of this adsorbent were 550 °C and 120 min, respectively. The equilibrium time was reached in 600 min and the theoretical model that best fitted the kinetic data was the Elovich model. The BET was the best fit for the adsorption isotherm dataThis indicates that the adsorption process of sodium diclofenac by activated carbon can occur by two different mechanisms, monolayer and/or multilayer adsorption, depending on the conditions employed in the process, such as temperature and adsorbate concentration. The thermodynamic study showed that the process was favourable and spontaneous in the temperature range evaluated. Furthermore, the characterizations showed by TG/DTG and FTIR analyses that the temperature throughout the process had a marked impact on the degradation of the organic constituents of the biomass and the appearance of distinct functional groups that contributed to the adsorption process of diclofenac sodium. Finally, the toxicity tests recognized that this adsorbent does not affect the germination of L. sativa species. Thus, this adsorbent may become a novel and viable option to be used in the removal of sodium diclofenac.

3.
An Acad Bras Cienc ; 95(2): e20211598, 2023.
Article in English | MEDLINE | ID: mdl-37341271

ABSTRACT

Despite being little explored for petroporphyrins recovery from oils and bituminous shales, adsorption and desorption processes can be feasible alternatives to obtain a similar synthetic material, and to characterize their original organic materials. Experimental designs were used to analyze the effects of qualitative (e.g., type of adsorbent, solvent, and diluent) and quantitative (e.g., temperature and solid/liquid ratio) variables on the adsorptive and desorptive performance regarding nickel octaethylporphyrin (Ni-OEP) removal using carbon-based adsorbents. The evaluation variables, adsorption capacity (qe ) and desorption percentage (%desorption ) were optimized by means of the Differential Evolution algorithm. The most efficient adsorbent for removing/recovery Ni-OEP was activated-carbon coconut shell, in which dispersive π-π type and acid-base interactions were likely formed. The highest values of qe and %desorption were obtained using toluene as solvent, chloroform as diluent, 293 K as temperature, and 0.5 mg.mL-1 as solid/liquid ratio for adsorption, and a higher temperature (323 K) and lower solid/liquid ratio (0.2 mg.mL-1) for desorption. The optimization process resulted in qe of 6.91 mg.g-1 and %desorption of 35.2%. In the adsorption-desorption cycles, approximately 77% of the adsorbed porphyrins were recovered. The results demonstrated the potential of carbon-based materials as adsorbent materials for obtaining porphyrin compounds from oils and bituminous shales.


Subject(s)
Nickel , Porphyrins , Carbon , Adsorption , Excipients , Solvents
4.
Environ Sci Pollut Res Int ; 30(16): 46604-46617, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36719587

ABSTRACT

Chemicals from anthropogenic activities such as domestic sewage, pesticide leaching, and improper chemical disposal have caused groundwater contamination. The presence of these emerging contaminants in the aquatic environment can change water quality and biota composition. Thus, this study investigates the effect of two emerging contaminants, anti-inflammatory drug diclofenac (DCF) and antibiotic sulfamethoxazole (SMX), on the aquatic environment, evaluating the phytoplankton community structure. A microcosm experiment was conducted with 16 sampling units, each one with 500 mL of water sample containing phytoplankton exposed to these drugs at different concentrations (0.1, 0.5, and 1.0 mg L-1). The experiment lasted 15 days, and samples were collected on days 0, 3, 5, 7, and 14 to evaluate the phytoplankton community, the concentrations of the drugs, and the nutrients in the samples. Six phytoplankton groups were identified, and diatoms and green algae were the most diverse and abundant groups. For the entire community, we identified differences between the days of the experiment, varying in the diversity and density of organisms, but not between the concentrations of the two drugs. Evaluating the groups separately, we identified differences in the abundance of cyanobacteria for the treatment with diclofenac and desmids for the treatment with sulfamethoxazole. We demonstrated that the presence of pharmaceuticals in freshwater ecosystems can somehow affect the phytoplankton community, especially the diversity and abundance of cyanobacteria and desmids. Therefore, our study indicates the importance of evaluating the presence of pharmaceuticals in freshwater ecosystems and their influence on aquatic organisms, as well as pharmaceuticals may be changing the structure of the aquatic environment.


Subject(s)
Cyanobacteria , Water Pollutants, Chemical , Diclofenac , Phytoplankton , Sulfamethoxazole , Ecosystem , Water Pollutants, Chemical/analysis , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL
...