Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(2): e0298592, 2024.
Article in English | MEDLINE | ID: mdl-38412144

ABSTRACT

Gut dysbiosis induced by oxygen and reactive oxygen species may be related to the development of inflammation, resulting in metabolic syndrome and associated-conditions in the gut. Here we show that elemental iron can serve as an antioxidant and reverse the oxygen-induced dysbiosis. Fecal samples from three healthy donors were fermented with elemental iron and/or oxygen. 16S rRNA analysis revealed that elemental iron reversed the oxygen-induced disruption of Shannon index diversity of the gut microbiota.The bacteria lacking enzymatic antioxidant systems also increased after iron treatment. Inter-individual differences, which corresponded to iron oxidation patterns, were observed for the tested donors. Gut bacteria responding to oxygen and iron treatments were identified as guilds, among which, Escherichia-Shigella was promoted by oxygen and depressed by elemental iron, while changes in bacteria such as Bifidobacterium, Blautia, Eubacterium, Ruminococcaceae, Flavonifractor, Oscillibacter, and Lachnospiraceae were reversed by elemental iron after oxygen treatment. Short-chain fatty acid production was inhibited by oxygen and this effect was partially reversed by elemental iron. These results suggested that elemental iron can regulate the oxygen/ROS state and protect the gut microbiota from oxidative stress.


Subject(s)
Gastrointestinal Microbiome , Lactobacillales , Humans , Oxygen/metabolism , Dysbiosis/chemically induced , Dysbiosis/microbiology , Antioxidants/metabolism , Iron/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Bacteria/genetics , Lactobacillales/genetics
2.
J Sci Food Agric ; 100(6): 2327-2336, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31975392

ABSTRACT

Biofilm-forming Bacillus species are often involved in persistent contamination and spoilage of dairy products. They therefore present a major microbiological challenge in the field of dairy food quality and safety. Due to their substantial physiological versatility, Bacillus species can survive in various parts of dairy manufacturing plants, leading to a high risk of product spoilage and potential dissemination of foodborne diseases. Furthermore, biofilm and heat-resistant spore formation make these bacteria challenging to eliminate. Thus, some strategies have been employed to remove, prevent, or delay the formation of Bacillus biofilms in the dairy industry, but with limited success. Lack of understanding of the Bacillus biofilm structure and behavior in conditions relevant to dairy-associated environments could partially account for this situation. The current paper reviews dairy-associated biofilm formation by Bacillus species, with particular attention to the role of biofilm in Bacillus species adaptation and survival in a dairy processing environment. Relevant model systems are discussed for the development of novel antimicrobial approaches to improve the quality of dairy food. © 2020 Society of Chemical Industry.


Subject(s)
Bacillus/physiology , Biofilms , Dairy Products/microbiology , Animals , Bacillus/growth & development , Dairying/methods , Food Microbiology , Food-Processing Industry/methods
3.
Foods ; 8(4)2019 Apr 20.
Article in English | MEDLINE | ID: mdl-31010041

ABSTRACT

One of the main strategies for maintaining the optimal hygiene level in dairy processing facilities is regular cleaning and disinfection, which is incorporated in the cleaning-in-place (CIP) regimes. However, a frail point of the CIP procedures is their variable efficiency in eliminating biofilm bacteria. In the present study, we evaluated the susceptibility of strong biofilm-forming dairy Bacillus isolates to industrial cleaning procedures using two differently designed model systems. According to our results, the dairy-associated Bacillus isolates demonstrate a higher resistance to CIP procedures, compared to the non-dairy strain of B. subtilis. Notably, the tested dairy isolates are highly persistent to different parameters of the CIP operations, including the turbulent flow of liquid (up to 1 log), as well as the cleaning and disinfecting effects of commercial detergents (up to 2.3 log). Moreover, our observations indicate an enhanced resistance of poly-γ-glutamic acid (PGA)-overproducing B. subtilis, which produces high amounts of proteinaceous extracellular matrix, to the CIP procedures (about 0.7 log, compared to the wild-type non-dairy strain of B. subtilis). We therefore suggest that the enhanced resistance to the CIP procedures by the dairy Bacillus isolates can be attributed to robust biofilm formation. In addition, this study underlines the importance of evaluating the efficiency of commercial cleaning agents in relation to strong biofilm-forming bacteria, which are relevant to industrial conditions. Consequently, we believe that the findings of this study can facilitate the assessment and refining of the industrial CIP procedures.

4.
Food Microbiol ; 82: 316-324, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31027789

ABSTRACT

Biofilm-forming Bacillus species are often involved in contamination of dairy products and therefore present a major microbiological challenge in the field of food quality and safety. In this study, we sequenced and analyzed the genomes of milk- and non-milk-derived Bacillus strains, and evaluated their biofilm-formation potential in milk. Unlike non-dairy Bacillus isolates, the dairy-associated Bacillus strains were characterized by formation of robust submerged and air-liquid interface biofilm (pellicle) during growth in milk. Moreover, genome comparison analysis revealed notable differences in putative biofilm-associated determinants between the dairy and non-dairy Bacillus isolates, which correlated with biofilm phenotype. These results suggest that biofilm formation by Bacillus species might represent a presumable adaptation strategy to the dairy environment.


Subject(s)
Adaptation, Physiological , Bacillus/physiology , Biofilms/growth & development , Milk/microbiology , Adaptation, Physiological/genetics , Animals , Bacillus/classification , Bacillus/genetics , Bacillus/growth & development , Cluster Analysis , DNA, Bacterial/genetics , Food Microbiology , Genes, Bacterial/genetics , Genetic Variation , Genome, Bacterial/genetics , Sequence Analysis, DNA
5.
ACS Appl Bio Mater ; 2(11): 4932-4940, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-35021493

ABSTRACT

Microbial contamination of dairy products caused by biofilm-forming bacteria is of great concern to the dairy industry, a leading sector impacted by food loss. Previous reports have emphasized that preventing biofilm formation on work surfaces of dairy equipment would be a more desirable option than treating it. However, there is currently no available technology that could completely prevent such biofilm formation without causing detrimental side effects. Here, we demonstrate that a bioinspired approach, exploiting superhydrophobic paraffin/fluorinated wax surfaces, can be efficiently employed to prevent dairy-associated biofilm formation. Our results showed that under conditions relevant to dairy food production (continuous flow of milk in the presence of substrates relevant to the dairy industry), biofilm development by strong biofilm-forming dairy Bacillus isolates was effectively mitigated (up to 97-99% inhibition) on the tested wax surfaces. This, coupled with the ability of these wax surfaces to retain their structure and functionality after prolonged exposure to milk, without producing any negative effects on milk quality, makes the technology potentially applicable in the dairy industry.

6.
Artif Cells Nanomed Biotechnol ; 46(sup2): 974-982, 2018.
Article in English | MEDLINE | ID: mdl-29806505

ABSTRACT

Probiotics, live microbial supplements, are often incorporated into foods and beverages to provide putative health benefits. To ensure their beneficial effects, these organisms must survive processing and storage of food, its passage through the upper gastrointestinal tract (GIT), and subsequent chemical ingestion processes until they reach their target organ. However, there is considerable loss of viability of probiotic bacteria in the acidic conditions of the stomach and the high bile concentration in the small intestine. Bacillus subtilis, a spore-forming non-pathogenic bacterium, recently has gained interest in its probiotic properties; it can effectively maintain a favorable balance of microflora in the GIT. In addition, B. subtilis produces an extracellular matrix that protects it from stressful environments. We suggested that the extracellular matrix produced by B. subtilis could protect other probiotic bacteria and therefore potentially could be used as a vehicle for delivering viable probiotic cells to humans. Therefore, we developed a novel cultivation system that enables co-culturing of B. subtilis along with probiotic lactic acid bacteria (LAB) by increasing production of the extracellular matrix by B. subtilis cells. Moreover, we showed that B. subtilis improved survivability of LAB during food preparation, storage and ingestion. Therefore, we believe that the results of our study will provide a novel technique of using a natural system for preservation and delivery of probiotics to humans.


Subject(s)
Bacillus subtilis/cytology , Bacillus subtilis/physiology , Biofilms , Extracellular Matrix/metabolism , Lactobacillus plantarum/metabolism , Probiotics , Bacillus subtilis/growth & development , Capsules , Coculture Techniques , Gastrointestinal Tract/microbiology , Hot Temperature , Humans , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/physiology , Survival Analysis
7.
Front Microbiol ; 7: 1498, 2016.
Article in English | MEDLINE | ID: mdl-27713737

ABSTRACT

Microbial damages caused by biofilm forming bacteria in the dairy industry are a fundamental threat to safety and quality of dairy products. In order to ensure the optimal level of equipment hygiene in the dairy industry, it is necessary to determine the biofilm removal efficiency of cleaning agents used for cleaning-in-place (CIP) procedures. However, currently there is no standard method available for evaluating and comparing cleaning agents for use in CIP procedures in the dairy industry under realistic conditions. The present study aims to establish a CIP model system to evaluate the effectiveness of cleaning agents in removal of biofilm derived spores from the surfaces of stainless steel which is the predominant substrate in milking equipment on dairy farms. The system is based on Bacillus subtilis spores surrounded with exopolymeric substances produced by bacteria during biofilm formation. The spores applied on sampling plates were mounted on T-junctions protruding 1.5-11-times the milk pipe diameter from the main loop to resemble different levels of cleaning difficulty. The cleaning tests were conducted using commercial alkaline detergents and caustic soda at conditions which are relevant to actual farm environment. The spores removal effect was evaluated by comparing the number of viable spores (attached to sampling plates) before and after cleaning. Evaluation of the cleaning and disinfecting effect of cleaning agents toward biofilm derived spores was further performed, which indicates whether spores elimination effect of an agent is due to killing the spores or removing them from the surfaces of dairy equipment. Moreover, it was established that the presence of extracellular matrix is an important factor responsible for high level of cleaning difficulty characteristic for surface attached spores. In overall, the results of this study suggest that the developed model system simulates actual farm conditions for quantitative evaluation of the effectiveness of cleaning and disinfecting agents and their cleaning and disinfecting effect on removal of biofilm derived spores.

8.
J Mater Chem B ; 3(7): 1371-1378, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-32264488

ABSTRACT

Biofilm formation enables bacteria to grow under unfavorable conditions, provides them with protection, and increases their resistance to antimicrobial agents. Once a biofilm has formed, it is difficult, and in some systems, impossible to treat. Strategies based on the release of biocidal agents have shown only transient efficiency. Herein, we present a novel bioinspired passive approach to the prevention of surface biofilm attachment by exploiting superhydrophobic surfaces formed via the self-assembly of paraffin or fluorinated wax crystals. Our surfaces show exceptional ability to inhibit biofilm formation of both Gram-positive Bacillus cereus and Gram-negative Pseudomonas aeruginosa over a 7 day period (up to 99.9% inhibition).

SELECTION OF CITATIONS
SEARCH DETAIL
...