Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 6164, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36257945

ABSTRACT

Interactions between quasiparticles are of fundamental importance and ultimately determine the macroscopic properties of quantum matter. A famous example is the phenomenon of superconductivity, which arises from attractive electron-electron interactions that are mediated by phonons or even other more exotic fluctuations in the material. Here we introduce mobile exciton impurities into a two-dimensional electron gas and investigate the interactions between the resulting Fermi polaron quasiparticles. We employ multi-dimensional coherent spectroscopy on monolayer WS2, which provides an ideal platform for determining the nature of polaron-polaron interactions due to the underlying trion fine structure and the valley specific optical selection rules. At low electron doping densities, we find that the dominant interactions are between polaron states that are dressed by the same Fermi sea. In the absence of bound polaron pairs (bipolarons), we show using a minimal microscopic model that these interactions originate from a phase-space filling effect, where excitons compete for the same electrons. We furthermore reveal the existence of a bipolaron bound state with remarkably large binding energy, involving excitons in different valleys cooperatively bound to the same electron. Our work lays the foundation for probing and understanding strong electron correlation effects in two-dimensional layered structures such as moiré superlattices.

2.
Sci Adv ; 7(45): eabj8905, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34731010

ABSTRACT

Topology is central to understanding and engineering materials that display robust physical phenomena immune to imperfections. Different topological phases of matter are characterized by topological invariants. In energy-conserving (Hermitian) systems, these invariants are determined by the winding of eigenstates in momentum space. In non-Hermitian systems, a topological invariant is predicted to emerge from the winding of the complex eigenenergies. Here, we directly measure the non-Hermitian topological invariant arising from exceptional points in the momentum-resolved spectrum of exciton polaritons. These are hybrid light-matter quasiparticles formed by photons strongly coupled to electron-hole pairs (excitons) in a halide perovskite semiconductor at room temperature. We experimentally map out both the real (energy) and imaginary (linewidth) parts of the spectrum near the exceptional points and extract the novel topological invariant­fractional spectral winding. Our work represents an essential step toward realization of non-Hermitian topological phases in a condensed matter system.

3.
Adv Mater ; 33(3): e2005732, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33275309

ABSTRACT

Atomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device. Here, it is shown that the novel, ultrathin Ga2 O3 glass is an ideal centimeter-scale coating material that enhances optical performance of the monolayers and protects them against further material deposition. In particular, Ga2 O3 capping of monolayer WS2 outperforms commercial-grade hBN in both scalability and optical performance at room temperature. These properties make Ga2 O3 highly suitable for large-scale passivation and protection of monolayer TMDCs in functional heterostructures.

4.
Phys Rev Lett ; 125(12): 123902, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016708

ABSTRACT

We consider exciton polaritons in a zigzag chain of coupled elliptical micropillars subjected to incoherent excitation. The driven-dissipative nature of the system along with the naturally present polarization splitting inside the pillars gives rise to nonreciprocal dynamics, which eventually leads to the non-Hermitian skin effect, where all the modes of the system collapse to one edge. As a result, the polaritons propagate only in one direction along the chain, independent of the excitation position, and the propagation in the opposite direction is suppressed. The system shows robustness against disorder and, using the bistable nature of polaritons to encode information, we show one-way information transfer. This paves the way for compact and robust feedback-free one-dimensional polariton transmission channels without the need for external magnetic field, which are compatible with proposals for polaritonic circuits.

5.
Nat Commun ; 11(1): 429, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31969565

ABSTRACT

Superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations-the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton-polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton-polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton-polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton-polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.

6.
Nat Commun ; 9(1): 3286, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115908

ABSTRACT

Bosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling between a Tamm-plasmon resonance, GaAs quantum well excitons, and two-dimensional excitons confined in the monolayer crystal. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode, its density-dependent blueshift, and a dramatic collapse of the emission linewidth, a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint for spin-valley locking in monolayer excitons. Our results pave the way towards highly nonlinear, coherent valleytronic devices and light sources.

7.
Nat Mater ; 15(7): 702-3, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27329462
8.
Phys Rev Lett ; 113(20): 200404, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25432029

ABSTRACT

Controlled transfer of orbital angular momentum to an exciton-polariton Bose-Einstein condensate spontaneously created under incoherent, off resonant excitation conditions is a long-standing challenge in the field of microcavity polaritonics. We demonstrate, experimentally and theoretically, a simple and efficient approach to the generation of nontrivial orbital angular momentum states by using optically induced potentials-chiral polaritonic lenses. These lenses are produced by a structured optical pump with a spatial distribution of intensity that breaks the chiral symmetry of the system.

9.
Opt Express ; 19(27): 26132-49, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22274201

ABSTRACT

We present a general theory of spin-to-orbital angular momentum (AM) conversion of light in focusing, scattering, and imaging optical systems. Our theory employs universal geometric transformations of non-paraxial optical fields in such systems and allows for direct calculation and comparison of the AM conversion efficiency in different physical settings. Observations of the AM conversions using local intensity distributions and far-field polarimetric measurements are discussed.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Models, Theoretical , Computer Simulation , Light , Scattering, Radiation
10.
Phys Rev Lett ; 104(25): 253601, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20867375

ABSTRACT

We show, both theoretically and experimentally, that high-numerical-aperture (NA) optical microscopy is accompanied by strong spin-orbit interaction of light, which translates fine information about the specimen to the polarization degrees of freedom of light. An 80 nm gold nanoparticle scattering the light in the focus of a high-NA objective generates angular momentum conversion, which is seen as a nonuniform polarization distribution at the exit pupil. We demonstrate remarkable sensitivity of the effect to the position of the nanoparticle: Its subwavelength displacement produces the giant spin-Hall effect, i.e., macroseparation of spins in the outgoing light. This brings forth a far-field optical nanoprobing technique based on the spin-orbit interaction of light.

11.
Phys Rev Lett ; 105(9): 090401, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20868140

ABSTRACT

We propose a method for achieving dynamically controllable transport of highly mobile matter-wave solitons in a driven two-dimensional optical lattice. Our numerical analysis based on the mean-field model and the theory based on the time-averaging approach demonstrate that a fast time-periodic rocking of the two-dimensional optical lattice enables efficient stabilization and manipulation of spatially localized matter wave packets via induced reconfigurable mobility channels.

12.
Phys Rev Lett ; 101(15): 150403, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18999576

ABSTRACT

We study the dynamics of bright solitons formed in a Bose-Einstein condensate with attractive atomic interactions perturbed by a weak bichromatic optical lattice potential. The lattice depth is a biperiodic function of time with a zero mean, which realizes a flashing ratchet for matter-wave solitons. We find that the average velocity of a soliton and the soliton current induced by the ratchet depend on the number of atoms in the soliton. As a consequence, soliton transport can be induced through scattering of different solitons. In the regime when matter-wave solitons are narrow compared to the lattice period the dynamics is well described by the effective Hamiltonian theory.

13.
Phys Rev Lett ; 96(4): 040401, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16486792

ABSTRACT

We demonstrate that the recent observation of nonlinear self-trapping of matter waves in one-dimensional optical lattices [Th. Anker, Phys. Rev. Lett. 94, 020403 (2005)10.1103/PhysRevLett.94.020403] can be associated with a novel type of broad nonlinear state existing in the gaps of the matter-wave band-gap spectrum. We find these self-trapped localized modes in one-, two-, and three-dimensional periodic potentials, and demonstrate that such novel gap states can be generated experimentally in any dimension.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(5 Pt 2): 056616, 2005 May.
Article in English | MEDLINE | ID: mdl-16089677

ABSTRACT

We derive two systems of coupled-mode equations for spatial gap solitons in one-dimensional (1D) and quasi-one-dimensional (Q1D) photonic lattices induced by two interfering optical beams in a nonlinear photorefractive crystal. The models differ from the ordinary coupled-mode system (e.g., for the fiber Bragg grating) by saturable nonlinearity and, if expanded to cubic terms, by the presence of four-wave-mixing terms. In the 1D system, solutions for stationary gap solitons are obtained in an implicit analytical form. For the Q1D model and for tilted ("moving") solitons in both models, solutions are found in a numerical form. The existence of stable tilted solitons in the full underlying model of the photonic lattice in the photorefractive medium is also shown. The stability of gap solitons is systematically investigated in direct simulations, revealing a nontrivial border of instability against oscillatory perturbations. In the Q1D model, two disjointed stability regions are found. The stability border of tilted solitons does not depend on the tilt. Interactions between stable tilted solitons are investigated too. The collisions are, chiefly, elastic, but they may be inelastic close to the instability border.

15.
Phys Rev Lett ; 93(16): 160405, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15524961

ABSTRACT

We predict the existence of spatially localized nontrivial topological states of a Bose-Einstein condensate with repulsive atomic interactions confined by an optical lattice. These nonlinear localized states, matter-wave gap vortices, carry a vortexlike phase dislocation and exist in the gaps of the matter-wave band-gap spectrum due to the Bragg scattering. We discuss the structure, stability, and formation dynamics of the gap vortices in the case of two-dimensional optical lattices.

16.
Phys Rev Lett ; 92(18): 180405, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15169475

ABSTRACT

We study nonlinear localization of a two-component Bose-Einstein condensate (BEC) in a one-dimensional optical lattice. Our theory shows that spin-dependent optical lattices can be used to effectively manipulate the nonlinear interactions between the BEC components, and to observe composite localized states of a BEC in both bands and gaps of the matter-wave spectrum.

17.
Phys Rev Lett ; 92(12): 123903, 2004 Mar 26.
Article in English | MEDLINE | ID: mdl-15089673

ABSTRACT

We report on the first experimental observation of discrete vortex solitons in two-dimensional optically induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.

18.
Phys Rev Lett ; 91(15): 153902, 2003 Oct 10.
Article in English | MEDLINE | ID: mdl-14611467

ABSTRACT

We introduce novel optical solitons that consist of a periodic and a spatially localized component coupled nonlinearly via cross-phase modulation. The spatially localized optical field can be treated as a gap soliton supported by the optically induced nonlinear grating. We find different types of these band-gap composite solitons and demonstrate their dynamical stability.

19.
Phys Rev Lett ; 90(16): 160407, 2003 Apr 25.
Article in English | MEDLINE | ID: mdl-12731966

ABSTRACT

We demonstrate that a Bose-Einstein condensate in an optical lattice forms a reconfigurable matter-wave structure with a band-gap spectrum, which resembles a nonlinear photonic crystal for light waves. We study in detail the case of a two-dimensional square optical lattice and show that this atomic band-gap structure allows nonlinear localization of atomic Bloch waves in the form of two-dimensional matter-wave gap solitons.

SELECTION OF CITATIONS
SEARCH DETAIL
...