Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Hippocampus ; 30(12): 1298-1312, 2020 12.
Article in English | MEDLINE | ID: mdl-32894631

ABSTRACT

Analysis of long-term potentiation (LTP) provides a powerful window into cellular mechanisms of learning and memory. Prior work shows late LTP (L-LTP), lasting >3 hr, occurs abruptly at postnatal day 12 (P12) in the stratum radiatum of rat hippocampal area CA1. The goal here was to determine the developmental profile of synaptic plasticity leading to L-LTP in the mouse hippocampus. Two mouse strains and two mutations known to affect synaptic plasticity were chosen: C57BL/6J and Fmr1-/y on the C57BL/6J background, and 129SVE and Hevin-/- (Sparcl1-/- ) on the 129SVE background. Like rats, hippocampal slices from all of the mice showed test pulse-induced depression early during development that was gradually resolved with maturation by 5 weeks. All the mouse strains showed a gradual progression between P10-P35 in the expression of short-term potentiation (STP), lasting ≤1 hr. In the 129SVE mice, L-LTP onset (>25% of slices) occurred by 3 weeks, reliable L-LTP (>50% slices) was achieved by 4 weeks, and Hevin-/- advanced this profile by 1 week. In the C57BL/6J mice, L-LTP onset occurred significantly later, over 3-4 weeks, and reliability was not achieved until 5 weeks. Although some of the Fmr1-/y mice showed L-LTP before 3 weeks, reliable L-LTP also was not achieved until 5 weeks. L-LTP onset was not advanced in any of the mouse genotypes by multiple bouts of theta-burst stimulation at 90 or 180 min intervals. These findings show important species differences in the onset of STP and L-LTP, which occur at the same age in rats but are sequentially acquired in mice.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Hippocampus/growth & development , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Animals , Animals, Newborn , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Culture Techniques , Species Specificity
2.
PLoS One ; 15(1): e0226797, 2020.
Article in English | MEDLINE | ID: mdl-31940316

ABSTRACT

Analysis of neuronal compartments has revealed many state-dependent changes in geometry but establishing synapse-specific mechanisms at the nanoscale has proven elusive. We co-expressed channelrhodopsin2-GFP and mAPEX2 in a subset of hippocampal CA3 neurons and used trains of light to induce late-phase long-term potentiation (L-LTP) in area CA1. L-LTP was shown to be specific to the labeled axons by severing CA3 inputs, which prevented back-propagating recruitment of unlabeled axons. Membrane-associated mAPEX2 tolerated microwave-enhanced chemical fixation and drove tyramide signal amplification to deposit Alexa Fluor dyes in the light-activated axons. Subsequent post-embedding immunogold labeling resulted in outstanding ultrastructure and clear distinctions between labeled (activated), and unlabeled axons without obscuring subcellular organelles. The gold-labeled axons in potentiated slices were reconstructed through serial section electron microscopy; presynaptic vesicles and other constituents could be quantified unambiguously. The genetic specification, reliable physiology, and compatibility with established methods for ultrastructural preservation make this an ideal approach to link synapse ultrastructure and function in intact circuits.


Subject(s)
Axons/radiation effects , Axons/ultrastructure , Light , Long-Term Potentiation/radiation effects , Optogenetics , Animals , Axons/metabolism , Axons/physiology , Rats , Synapses/metabolism , Synapses/radiation effects
3.
PLoS Biol ; 17(10): e3000477, 2019 10.
Article in English | MEDLINE | ID: mdl-31600280

ABSTRACT

The striatum plays a fundamental role in motor learning and reward-related behaviors that are synergistically shaped by populations of D1 dopamine receptor (D1R)- and D2 dopamine receptor (D2R)-expressing medium spiny neurons (MSNs). How various neurotransmitter inputs converging on common intracellular pathways are parsed out to regulate distinct behavioral outcomes in a neuron-specific manner is poorly understood. Here, we reveal that distinct contributions of D1R-MSNs and D2R-MSNs towards reward and motor behaviors are delineated by the multifaceted signaling protein neurofibromin 1 (NF1). Using genetic mouse models, we show that NF1 in D1R-MSN modulates opioid reward, whereas loss of NF1 in D2R-MSNs delays motor learning by impeding the formation and consolidation of repetitive motor sequences. We found that motor learning deficits upon NF1 loss were associated with the disruption in dopamine signaling to cAMP in D2R-MSN. Restoration of cAMP levels pharmacologically or chemogenetically rescued the motor learning deficits seen upon NF1 loss in D2R-MSN. Our findings illustrate that multiplex signaling capabilities of MSNs are deployed at the level of intracellular pathways to achieve cell-specific control over behavioral outcomes.


Subject(s)
Corpus Striatum/physiology , Neurofibromin 1/metabolism , Neurons/physiology , Animals , Cyclic AMP/metabolism , Dopamine/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Motor Activity/physiology , Neurons/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Reward , Signal Transduction
4.
Nat Commun ; 10(1): 3622, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399584

ABSTRACT

Caspase-2 is the most evolutionarily conserved member in the caspase family of proteases and is constitutively expressed in most cell types including neurons; however, its physiological function remains largely unknown. Here we report that caspase-2 plays a critical role in synaptic plasticity and cognitive flexibility. We found that caspase-2 deficiency led to deficits in dendritic spine pruning, internalization of AMPA receptors and long-term depression. Our results indicate that caspase-2 degrades Rictor, a key mTOR complex 2 (mTORC2) component, to inhibit Akt activation, which leads to enhancement of the GSK3ß activity and thereby long-term depression. Furthermore, we found that mice lacking caspase-2 displayed elevated levels of anxiety, impairment in reversal water maze learning, and little memory loss over time. These results not only uncover a caspase-2-mTORC2-Akt-GSK3ß signaling pathway, but also suggest that caspase-2 is important for memory erasing and normal behaviors by regulating synaptic number and transmission.


Subject(s)
Caspase 2/metabolism , Cognition/physiology , Glycogen Synthase Kinase 3 beta/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, AMPA/metabolism , Signal Transduction/physiology , Animals , Anxiety , Behavior, Animal , Carrier Proteins/metabolism , Caspase 2/genetics , Dendritic Spines/genetics , Dendritic Spines/metabolism , Hippocampus/metabolism , Long-Term Synaptic Depression/genetics , Long-Term Synaptic Depression/physiology , Male , Maze Learning , Memory Disorders/metabolism , Mice , Mice, Knockout , Neuronal Plasticity , Neurons/metabolism , Receptors, Glutamate/metabolism
5.
J Neurosci ; 38(46): 10002-10015, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30315127

ABSTRACT

The neuromodulatory effects of GABA on pyramidal neurons are mediated by GABAB receptors (GABABRs) that signal via a conserved G-protein-coupled pathway. Two prominent effectors regulated by GABABRs include G-protein inwardly rectifying K+ (GIRK) and P/Q/N type voltage-gated Ca2+ (CaV2) ion channels that control excitability and synaptic output of these neurons, respectively. Regulator of G-protein signaling 7 (RGS7) has been shown to control GABAB effects, yet the specificity of its impacts on effector channels and underlying molecular mechanisms is poorly understood. In this study, we show that hippocampal RGS7 forms two distinct complexes with alternative subunit configuration bound to either membrane protein R7BP (RGS7 binding protein) or orphan receptor GPR158. Quantitative biochemical experiments show that both complexes account for targeting nearly the entire pool of RGS7 to the plasma membrane. We analyzed the effect of genetic elimination in mice of both sexes and overexpression of various components of RGS7 complex by patch-clamp electrophysiology in cultured neurons and brain slices. We report that RGS7 prominently regulates GABABR signaling to CaV2, in addition to its known involvement in modulating GIRK. Strikingly, only complexes containing R7BP, but not GPR158, accelerated the kinetics of both GIRK and CaV2 modulation by GABABRs. In contrast, GPR158 overexpression exerted the opposite effect and inhibited RGS7-assisted temporal modulation of GIRK and CaV2 by GABA. Collectively, our data reveal mechanisms by which distinctly composed macromolecular complexes modulate the activity of key ion channels that mediate the inhibitory effects of GABA on hippocampal CA1 pyramidal neurons.SIGNIFICANCE STATEMENT This study identifies the contributions of distinct macromolecular complexes containing a major G-protein regulator to controlling key ion channel function in hippocampal neurons with implications for understanding molecular mechanisms underlying synaptic plasticity, learning, and memory.


Subject(s)
Caveolin 2/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , Hippocampus/physiology , Neurons/physiology , RGS Proteins/physiology , Signal Transduction/physiology , Animals , Cells, Cultured , Female , Insecta , Ion Channels/physiology , Male , Mice , Mice, Knockout , Neural Inhibition/physiology
6.
Neuropharmacology ; 128: 11-21, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28943285

ABSTRACT

Neuroinflammation is one of the mechanisms leading to neurodegenerative brain damage induced by chronic alcohol (ethanol) exposure. Microglia play a major role in the development of innate immune responses to environmental injuries including ethanol. Adenosine 5″-triphosphate (ATP)-activated purinergic P2X receptor (P2XR) subtypes, P2X4Rs and P2X7Rs, are endogenously expressed in microglia and can modulate their activity. These 2 P2XR subtypes differ pharmacologically and functionally: 1) P2X4Rs are activated at lower (≤0.1 mM) whereas P2X7Rs - at higher (≥1.0 mM) ATP concentrations; 2) P2X4R activation contributes to the release of brain derived neurotrophic factor and its role in tactile allodynia and neuropathic pain is demonstrated; 3) Due to its role in the secretion of pro-inflammatory IL-1ß, P2X7Rs have been implicated in the development of neurodegenerative pathologies, pain and morphine tolerance. To date, the roles of individual P2XR subtypes in ethanol effects on microglia and the functional consequences are not completely understood. Based on the existing knowledge on the pharmacological and functional differences between P2X4Rs and P2X7Rs, the present work tested the hypothesis that P2X4Rs and P2X7Rs play differential roles in ethanol action in microglia. Effects of ethanol on P2X4R and P2X7R activity, expression and functional consequences were determined using murine BV2 microglial cells. Ethanol (≥100 mM) inhibited P2X4Rs but was inactive on P2X7 channel activity. Ethanol (25, 100 mM) inhibited P2X4R-mediated microglia migration whereas it potentiated pore formation in P2X7Rs. Furthermore, ethanol (25, 100 mM) potentiated P2X7R-mediated IL-1ß secretion from BV2 microglia. Ethanol also induced protein expression for both P2XR subtypes. Overall, the findings identify differential roles for P2X4Rs and P2X7Rs in regards to ethanol effects on microglia which may be linked to different stages of ethanol exposure.


Subject(s)
Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Microglia/drug effects , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Cell Line, Transformed , Cell Movement/drug effects , Dose-Response Relationship, Drug , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Membrane Potentials/drug effects , Mice , Patch-Clamp Techniques , Platelet Aggregation Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/metabolism
7.
Biol Psychiatry ; 80(10): 796-806, 2016 11 15.
Article in English | MEDLINE | ID: mdl-26612516

ABSTRACT

BACKGROUND: Cognitive dysfunction occurs in many debilitating conditions including Alzheimer's disease, Down syndrome, schizophrenia, and mood disorders. The dorsal hippocampus is a critical locus of cognitive processes linked to spatial and contextual learning. G protein-gated inwardly rectifying potassium ion (GIRK/Kir3) channels, which mediate the postsynaptic inhibitory effect of many neurotransmitters, have been implicated in hippocampal-dependent cognition. Available evidence, however, derives primarily from constitutive gain-of-function models that lack cellular specificity. METHODS: We used constitutive and neuron-specific gene ablation models targeting an integral subunit of neuronal GIRK channels (GIRK2) to probe the impact of GIRK channels on associative learning and memory. RESULTS: Constitutive Girk2-/- mice exhibited a striking deficit in hippocampal-dependent (contextual) and hippocampal-independent (cue) fear conditioning. Mice lacking GIRK2 in gamma-aminobutyric acid neurons (GAD-Cre:Girk2flox/flox mice) exhibited a clear deficit in GIRK-dependent signaling in dorsal hippocampal gamma-aminobutyric acid neurons but no evident behavioral phenotype. Mice lacking GIRK2 in forebrain pyramidal neurons (CaMKII-Cre(+):Girk2flox/flox mice) exhibited diminished GIRK-dependent signaling in dorsal, but not ventral, hippocampal pyramidal neurons. CaMKII-Cre(+):Girk2flox/flox mice also displayed a selective impairment in contextual fear conditioning, as both cue fear and spatial learning were intact in these mice. Finally, loss of GIRK2 in forebrain pyramidal neurons correlated with enhanced long-term depression and blunted depotentiation of long-term potentiation at the Schaffer collateral/cornu ammonis 1 synapse in the dorsal hippocampus. CONCLUSIONS: Our data suggest that GIRK channels in dorsal hippocampal pyramidal neurons are necessary for normal learning involving aversive stimuli and support the contention that dysregulation of GIRK-dependent signaling may underlie cognitive dysfunction in some disorders.


Subject(s)
Cognitive Dysfunction/metabolism , Fear/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , Hippocampus/metabolism , Learning/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/metabolism , Signal Transduction/physiology , Animals , Cognitive Dysfunction/physiopathology , Conditioning, Psychological , Hippocampus/physiopathology , Mice , Mice, Transgenic
8.
Biol Psychiatry ; 80(3): 235-45, 2016 08 01.
Article in English | MEDLINE | ID: mdl-26364547

ABSTRACT

BACKGROUND: Morphine mediates its euphoric and analgesic effects by acting on the µ-opioid receptor (MOR). MOR belongs to the family of G-protein coupled receptors whose signaling efficiency is controlled by the regulator of G-protein signaling (RGS) proteins. Our understanding of the molecular diversity of RGS proteins that control MOR signaling, their circuit specific actions, and underlying cellular mechanisms is very limited. METHODS: We used genetic approaches to ablate regulator of G-protein signaling 7 (RGS7) both globally and in specific neuronal populations. We used conditioned place preference and self-administration paradigms to examine reward-related behavior and a battery of tests to assess analgesia, tolerance, and physical dependence to morphine. Electrophysiology approaches were applied to investigate the impact of RGS7 on morphine-induced alterations in neuronal excitability and plasticity of glutamatergic synapses. At least three animals were used for each assessment. RESULTS: Elimination of RGS7 enhanced reward, increased analgesia, delayed tolerance, and heightened withdrawal in response to morphine administration. RGS7 in striatal neurons was selectively responsible for determining the sensitivity of rewarding and reinforcing behaviors to morphine without affecting analgesia, tolerance, and withdrawal. In contrast, deletion of RGS7 in dopaminergic neurons did not influence morphine reward. RGS7 exerted its effects by controlling morphine-induced changes in excitability of medium spiny neurons in nucleus accumbens and gating the compositional plasticity of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors. CONCLUSIONS: This study identifies RGS7 as a novel regulator of MOR signaling by dissecting its circuit specific actions and pinpointing its role in regulating morphine reward by controlling the activity of nucleus accumbens neurons.


Subject(s)
Corpus Striatum/physiology , Morphine/pharmacology , RGS Proteins/metabolism , Reward , Signal Transduction/drug effects , Animals , Conditioning, Psychological , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Drug Tolerance/physiology , Female , Glutamic Acid/physiology , Male , Mice , Mice, Knockout , Neurons/physiology , Nucleus Accumbens/physiology , Pain Measurement/drug effects , RGS Proteins/genetics , RGS Proteins/physiology , Self Administration , Substance Withdrawal Syndrome/physiopathology
9.
Sci Signal ; 8(405): ra123, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26628681

ABSTRACT

Members of the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) family play key roles in many physiological functions and are extensively exploited pharmacologically to treat diseases. Many of the diverse effects of individual GPCRs on cellular physiology are transduced by heterotrimeric G proteins, which are composed of α, ß, and γ subunits. GPCRs interact with and stimulate the binding of guanosine triphosphate (GTP) to the α subunit to initiate signaling. Mammalian genomes encode 16 different G protein α subunits, each one of which has distinct properties. We developed a single-platform, optical strategy to monitor G protein activation in live cells. With this system, we profiled the coupling ability of individual GPCRs for different α subunits, simultaneously quantifying the magnitude of the signal and the rates at which the receptors activated the G proteins. We found that individual receptors engaged multiple G proteins with varying efficacy and kinetics, generating fingerprint-like profiles. Different classes of GPCR ligands, including full and partial agonists, allosteric modulators, and antagonists, distinctly affected these fingerprints to functionally bias GPCR signaling. Finally, we showed that intracellular signaling modulators further altered the G protein-coupling profiles of GPCRs, which suggests that their differential abundance may alter signaling outcomes in a cell-specific manner. These observations suggest that the diversity of the effects of GPCRs on cellular physiology may be determined by their differential engagement of multiple G proteins, coupling to which produces signals with varying signal magnitudes and activation kinetics, properties that may be exploited pharmacologically.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Guanosine Triphosphate/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Animals , GTP-Binding Protein alpha Subunits/genetics , Guanosine Triphosphate/genetics , Humans , Mice , Receptors, G-Protein-Coupled/genetics
10.
Elife ; 3: e02053, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24755289

ABSTRACT

In the hippocampus, the inhibitory neurotransmitter GABA shapes the activity of the output pyramidal neurons and plays important role in cognition. Most of its inhibitory effects are mediated by signaling from GABAB receptor to the G protein-gated Inwardly-rectifying K+ (GIRK) channels. Here, we show that RGS7, in cooperation with its binding partner R7BP, regulates GABABR-GIRK signaling in hippocampal pyramidal neurons. Deletion of RGS7 in mice dramatically sensitizes GIRK responses to GABAB receptor stimulation and markedly slows channel deactivation kinetics. Enhanced activity of this signaling pathway leads to decreased neuronal excitability and selective disruption of inhibitory forms of synaptic plasticity. As a result, mice lacking RGS7 exhibit deficits in learning and memory. We further report that RGS7 is selectively modulated by its membrane anchoring subunit R7BP, which sets the dynamic range of GIRK responses. Together, these results demonstrate a novel role of RGS7 in hippocampal synaptic plasticity and memory formation. DOI: http://dx.doi.org/10.7554/eLife.02053.001.


Subject(s)
CA1 Region, Hippocampal/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , GTP-Binding Protein beta Subunits/physiology , Memory , Neuronal Plasticity/physiology , RGS Proteins/physiology , Receptors, GABA-B/metabolism , Animals , CA1 Region, Hippocampal/metabolism , Cells, Cultured , Mice , Signal Transduction
11.
J Pharmacol Exp Ther ; 337(1): 171-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21212160

ABSTRACT

P2X receptors (P2XRs) are ion channels gated by synaptically released ATP. The P2X4 is the most abundant P2XR subtype expressed in the central nervous system and to date is the most ethanol-sensitive. In addition, genomic findings suggest that P2X4Rs may play a role in alcohol intake/preference. However, little is known regarding how ethanol causes the inhibition of ATP-gated currents in P2X4Rs. We begin to address this issue by investigating the effects of ethanol in wild-type and mutant D331A and M336A P2X4Rs expressed in human embryonic kidney (HEK) 293 cells using whole-cell patch-clamp methods. The results suggest that residues D331 and M336 play a role in P2X4R gating and ethanol inhibits channel functioning via a mechanism different from that in other P2XRs. Key findings from the study include: 1) ethanol inhibits ATP-gated currents in a rapid manner; 2) ethanol inhibition of ATP-gated currents does not depend on voltage and ATP concentration; 3) residues 331 and 336 slow P2X4 current deactivation and regulate the inhibitory effects of ethanol; and 4) ethanol effects are similar in HEK293 cells transfected with P2X4Rs and cultured rat hippocampal neurons transduced with P2X4Rs using a recombinant lentiviral system. Overall, these findings provide key information regarding the mechanism of ethanol action on ATP-gated currents in P2X4Rs and provide new insights into the biophysical properties of P2X4Rs.


Subject(s)
Ethanol/pharmacology , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X4/metabolism , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2X4/physiology , Time Factors
12.
J Neurochem ; 112(1): 307-17, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19878433

ABSTRACT

ATP-gated P2X4 receptors (P2X4R) are abundantly expressed in the CNS. However, little is known about the molecular targets for ethanol action in P2X4Rs. The current investigation tested the hypothesis that the ectodomain-transmembrane (TM) interface contains residues that are important for the action of ethanol in P2X4Rs. Wild type (WT) and mutant P2X4R were expressed in Xenopus oocytes. ATP concentration-response curves and ethanol (10-200 mM)-induced changes in ATP EC(10)-gated currents were determined using two-electrode voltage clamp (-70 mV). Alanine substitution at the ectodomain-TM1 interface (positions 50-61) resulted in minimal changes in ethanol response. On the other hand, alanine substitution at the ectodomain-TM2 interface (positions 321-337) identified two key residues (D331 and M336) that significantly reduced ethanol inhibition of ATP-gated currents without causing marked changes in ATP I(max), EC(50), or Hill's slope. Other amino acid substitutions at positions 331 and 336 significantly altered or eliminated the modulatory effects of ethanol. Linear regression analyses revealed a significant relationship between hydropathy and polarity, but not molecular volume/molecular weight of the residues at these two positions. The results support the proposed hypothesis and represent an important step toward developing ethanol-insensitive receptors for investigating the role of P2X4Rs in mediating behavioral effects of ethanol.


Subject(s)
Ethanol/pharmacology , Point Mutation/genetics , Purinergic P2 Receptor Antagonists , Receptors, Purinergic P2/genetics , Adenosine Triphosphate/pharmacology , Animals , Dose-Response Relationship, Drug , Ethanol/antagonists & inhibitors , Female , Protein Structure, Tertiary/drug effects , Protein Structure, Tertiary/genetics , Receptors, Purinergic P2X4 , Xenopus laevis
13.
Exp Gerontol ; 44(3): 201-7, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19017540

ABSTRACT

Intracellular Ca(2+) signaling is important to perfusion pressure related arterial reactivity and to vascular disorders including hypertension, angina and ischemic stroke. We have recently shown that advancing-age leads to calcium signaling adaptations in mesenteric arterial myocytes from C57 BL/6 mice [Corsso, C.D., Ostrovskaya, O., McAllister, C.E., Murray, K., Hatton, W.J., Gurney, A.M., Spencer, N.J., Wilson, S.M., 2006. Effects of aging on Ca(2+) signaling in murine mesenteric arterial smooth muscle cells. Mech. Ageing Dev. 127, 315-323)] which may contribute to decrements in perfusion pressure related arterial contractility others have shown occur. Even still, the mechanisms underlying the changes in Ca(2+) signaling and arterial reactivity are unresolved. Ca(2+) transport and storage capabilities are thought to contribute to age-related Ca(2+) signaling dysfunctions in other cell types. The present studies were therefore designed to test the hypothesis that cytosolic and compartmental Ca(2+) homeostasis in mesenteric arterial myocytes changes with advanced age. The hypothesis was tested by performing digitalized fluorescence microscopy on mesenteric arterial myocytes isolated from 5- to 6-month and 29- to 30-month-old C57Bl/6 mice. The data provide evidence that with advanced age capacitative Ca(2+) entry and sarcoplasmic reticulum Ca(2+) storage are increased although sarcoplasmic reticulum Ca(2+) uptake and plasma membrane Ca(2+) extrusion are unaltered. Overall, the studies begin to resolve the mechanisms associated with age-related alterations in mesenteric arterial smooth muscle Ca(2+) signaling and their physiological consequences.


Subject(s)
Aging/metabolism , Calcium Signaling/physiology , Mesenteric Arteries/cytology , Myocytes, Smooth Muscle/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Biological Transport, Active , Calcium Channels, L-Type/metabolism , Cell Membrane/metabolism , Cytosol/metabolism , Fluorescent Dyes , Fura-2/pharmacology , Homeostasis/physiology , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Sarcoplasmic Reticulum Calcium-Transporting ATPases/physiology
14.
J Pharmacol Exp Ther ; 323(1): 381-90, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17640951

ABSTRACT

Ryanodine is a selective ryanodine receptor (RyR) blocker, with binding dependent on RyR opening. In whole-cell studies, ryanodine binding can lock the RyR in an open-conductance state, short-circuiting the sarcoplasmic reticulum, which restricts studies of inositol-1,4,5-trisphosphate receptor (InsP3R) activity. Other RyR blockers have nonselective effects that also limit their utility. 4-(2-aminopropyl)-3,5-dichloro-N,N-dimethylaniline (FLA 365) blocks RyR-elicited Ca2+ increases in skeletal and cardiac muscle; yet, its actions on smooth muscle are unknown. Canine pulmonary arterial smooth muscle cells (PASMCs) express both RyRs and InsP3Rs; thus, we tested the ability of FLA 365 to block RyR- and serotonin-mediated InsP3R-elicited Ca2+ release by imaging fura-2-loaded PASMCs. Acute exposure to 10 mM caffeine, a selective RyR activator, induced Ca2+ increases that were reversibly reduced by FLA 365, with an estimated IC50 of approximately 1 to 1.5 microM, and inhibited by 10 microM ryanodine or 10 microM cyclopiazonic acid. FLA 365 also blocked L-type Ca2+ channel activity, with 10 microM reducing Ba2+ current amplitude in patch voltage-clamp studies to 54 +/- 6% of control and 100 microM FLA 365 reducing membrane current to 21 +/- 6%. InsP3R-mediated Ca2+ responses elicited by 10 microM 5-hydroxytryptamine (serotonin) in canine PASMCs and 100 microM carbachol in human embryonic kidney (HEK)-293 cells were not reduced by 2 microM FLA 365, but they were reduced by 20 microM FLA 365 to 76 +/- 9% of control in canine PASMCs and 52 +/- 1% in HEK-293 cells. Thus, FLA 365 preferentially blocks RyRs with limited inhibition of L-type Ca2+ channels or InsP3R in canine PASMCs.


Subject(s)
Calcium Channel Blockers/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Phenethylamines/pharmacology , Pulmonary Artery/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Barium/metabolism , Caffeine/pharmacology , Calcium Signaling/drug effects , Cell Line , Dogs , Dose-Response Relationship, Drug , Electrophysiology , Female , Indoles/pharmacology , Male , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Ryanodine/pharmacology
15.
Mech Ageing Dev ; 127(4): 315-23, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16413046

ABSTRACT

Pathophysiological changes in arterial smooth muscle structure and function occur with aging and there are a number of reports illustrating reductions in vascular responsiveness with aging. While much is known about arterial remodeling and functional adaptations with aging, very little is known about the biophysical adaptations in individual arterial myocytes. Cytosolic Ca2+ signaling, involving activation of L-type Ca2+ channels on the plasma membrane as well as InsP3 and ryanodine receptors on the sarcoplasmic reticulum, is integral to vascular tone and reactivity. Thus, we tested the hypothesis that aging results in reductions in the functional expression of L-type channels and temporal aspects of ryanodine receptor and InsP3 receptor Ca2+ signaling, in mesenteric arterial smooth muscle cells isolated from 6 and 30 months old C57Bl/6 mice. Comparisons of L-type current activity were made using dialyzed, whole-cell voltage-clamp techniques and Ba2+ as charge carrier. Ca2+ signaling was measured using fura-2 fluorescence microscopy techniques. Cell morphological changes were also investigated using electrophysiological and immunocytochemical approaches. The amplitudes of L-type Ca2+ currents were increased in older mice, but this was associated with membrane surface area increases of approximately 50%, due to increases in cell length not cell width. Consequently, L-type Ca2+ current densities were preserved with age, indicating functional channel expression was unchanged. In contrast, aging was associated with decrements in Ca2+ signaling in response to either ryanodine receptor stimulation by caffeine or InsP3 receptor activation with phenylephrine. These changes with aging may be related to the previously reported depression in myogenic reactivity.


Subject(s)
Aging , Calcium/metabolism , Mesenteric Arteries/cytology , Myocytes, Smooth Muscle/metabolism , Animals , Barium/metabolism , Caffeine/pharmacology , Calcium Channels/chemistry , Calcium Channels/metabolism , Calcium Channels, L-Type/metabolism , Cell Membrane/metabolism , Cell Physiological Phenomena , Cells, Cultured , Cytosol/metabolism , Electrophysiology , Fura-2/pharmacology , Large-Conductance Calcium-Activated Potassium Channels , Mice , Mice, Inbred C57BL , Models, Statistical , Patch-Clamp Techniques , Phenylephrine/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Signal Transduction , Time Factors
16.
PLoS Biol ; 3(4): e121, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15780005

ABSTRACT

Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.


Subject(s)
Brugia malayi/genetics , Evolution, Molecular , Genome, Bacterial , Wolbachia/genetics , Animals , Brugia malayi/pathogenicity , Gene Expression Regulation, Bacterial , Humans , Molecular Sequence Data , Symbiosis/genetics
17.
Eur J Neurosci ; 20(5): 1419-23, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15341614

ABSTRACT

RFamide (RFa)-related peptides modulate pain processing in the mammalian CNS. The effects of these peptides are generally considered as 'anti-opioid'. They also decrease the rate of desensitization of acid-sensing ionic channels (ASICs), putative nociceptors in dorsal root ganglia neurons [C. Askwith et al. (2000) Neuron, 26, 133-141]. We have tested the role of mollusc-derived peptide, FMRFa (Phe-Met-Arg-Phe-amide) and its synthetic analogues in peripheral nociception. Here we demonstrate that RFa-related peptides powerfully excite the majority of C-fibres in the skin-nerve preparation of rat: 76% of 55 tested fibres with the conduction velocity below 2 m/s responded with long-lasting discharges to the application of peptides (20 microm). When injected subcutaneously in vivo (mice), they initiate nociceptive behaviour. We confirm the data on humans [S. Ugawa et al. (2002) J. Clin. Invest., 110, 1185-1190]: the activation of C-fibres by acid is inhibited by channel blocker of ASICs, amiloride. However, there is no correlation in the sensitivity of C-fibres to RFa peptides, protons and amiloride: 74% of tested RFa-sensitive C-fibres were insensitive to protons and in 67% of cases the response to peptides was insensitive to amiloride. Thus, powerful excitatory/algogenic action of RFa-related peptides cannot be interpreted solely in terms of their interaction with ASICs. The peptides do not activate any conductance in the somatic membrane of dorsal root ganglion neurons of rats and probably affect still unidentified molecular target(s) responsible for nociceptive signalling.


Subject(s)
Nerve Fibers, Unmyelinated/drug effects , Neuropeptides/pharmacology , Pain Measurement/drug effects , Animals , In Vitro Techniques , Male , Mice , Nerve Fibers, Unmyelinated/physiology , Neural Conduction/drug effects , Neural Conduction/physiology , Pain Measurement/methods , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...