Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0304602, 2024.
Article in English | MEDLINE | ID: mdl-38809935

ABSTRACT

This study aims to investigate if high-concentration HOCl fogging disinfection causes cytotoxicity and genotoxicity to cultured primary human skin fibroblasts. The cells were exposed to a dry fog of HOCl produced from solutions with a concentration of 300 ppm (5.72 mM) or 500 ppm (9.53 mM). After four times when fibroblasts were exposed to aerosolized HOCl at a concentration of 500 ppm for 9 minutes, significant cytotoxicity and genotoxicity effects were observed. Significant changes in the morphology of fibroblasts and cell death due to membrane disruption were observed, independent of the number of exposures. Flow cytometry analyses performed under these experimental conditions indicated a decrease in the number of cells with an intact cell membrane in the exposed samples compared to the sham samples, dropping to 49.1% of the total cells. Additionally, under the same conditions, the neutral comet assay results demonstrated significant DNA damage in the exposed cells. However, no analogous damages were found when the cells were exposed to aerosolized HOCl generated from a 300-ppm solution for 3 minutes, whether once or four times. Therefore, we have concluded that aerosolized HOCl in dry fog, with a concentration exceeding 300 ppm, can cause cytotoxic and genotoxic effects on human skin fibroblasts.


Subject(s)
DNA Damage , Fibroblasts , Hypochlorous Acid , Humans , Fibroblasts/drug effects , Hypochlorous Acid/toxicity , DNA Damage/drug effects , Cells, Cultured , Comet Assay , Skin/drug effects , Skin/cytology , Aerosols , Cell Survival/drug effects
2.
Nanotechnology ; 34(50)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37725962

ABSTRACT

Three spherical activated carbons (SACs) were used as substrates for mammalian cell proliferation. SACs were obtained by carbonizing styrene-co-divinylbenzene ion exchangers 35WET, XAD4, or 1200H. The new materials (XAD_C, WET_C, and H_C) were characterized by adsorption-desorption nitrogen isotherms and mercury intrusion porosimetry. XAD_C and WET_C exhibited well-developed BET surface areas, similar total pore volumes, and highly different pore size distributions. H_C was nonporous spherical material-reference material. The XAD_C was meso-macroporous, but the WET_C was micro-mesoporous. All SACs were not cytotoxic toward Leydig TM3 cells. The differences in porous structure and morphology of the carbon scaffolds led to morphological differences in adhered cells. The monolayer of cells was distributed flat over the entire WET_C and H_C surfaces. Leydig TM3 cells adhered to nonporous SAC but were easily washed out due to weak adhesion. The cells adhered in clusters to XAD_C and proliferated in clusters. As microscopic techniques and viability tests demonstrated, only nanoporous carbons provided a good surface for the attachment and proliferation of eukaryotic cells.

3.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681896

ABSTRACT

The purpose of this study was to verify whether the nanosecond pulsed electric field, not eliciting thermal effects, permanently changes the molecular processes and gene expression of Leydig TM3 cells. The cells were exposed to a moderate electric field (80 quasi-rectangular shape pulses, 60 ns pulse width, and an electric field of 14 kV/cm). The putative disturbances were recorded over 24 h. After exposure to the nanosecond pulsed electric field, a 19% increase in cell diameter, a loss of microvilli, and a 70% reduction in cell adhesion were observed. Some cells showed the nonapoptotic externalization of phosphatidylserine through the pores in the plasma membrane. The cell proportion in the subG1 phase increased by 8% at the expense of the S and G2/M phases, and the DNA was fragmented in a small proportion of the cells. The membrane mitochondrial potential and superoxide content decreased by 37% and 23%, respectively. Microarray's transcriptome analysis demonstrated a negative transient effect on the expression of genes involved in oxidative phosphorylation, DNA repair, cell proliferation, and the overexpression of plasma membrane proteins. We conclude that nanosecond pulsed electric field affected the physiology and gene expression of TM3 cells transiently, with a noticeable heterogeneity of cellular responses.


Subject(s)
Biomarkers/metabolism , Electricity , Gene Expression Regulation/radiation effects , Leydig Cells/metabolism , Nanotechnology/methods , Animals , Apoptosis , Cell Membrane/metabolism , Cell Membrane/radiation effects , Cell Movement , Cell Proliferation , Cells, Cultured , Electroporation , Leydig Cells/radiation effects , Male , Membrane Potential, Mitochondrial , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...