Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 131(4): 1502-12, 2009 Feb 04.
Article in English | MEDLINE | ID: mdl-19173667

ABSTRACT

The charge-transport parameters of the perfluoropentacene and perfluorotetracene crystals are studied with a joint experimental and theoretical approach that combines gas-phase ultraviolet photoelectron spectroscopy and density functional theory. To gain a better understanding of the role of perfluorination, the results for perfluoropentacene and perfluorotetracene are compared to those for their parent oligoacenes, that is, pentacene and tetracene. Perfluorination is calculated to increase the ionization potentials and electron affinities by approximately 1 eV, which is expected to reduce significantly the injection barrier for electrons in organic electronics devices. Perfluorination also leads to significant changes in the crystalline packing, which greatly affects the electronic properties of the crystals and their charge-transport characteristics. The calculations predict large conduction and valence bandwidths and low hole and electron effective masses in the perfluoroacene crystals, with the largest mobilities expected along the pi-stacks. Perfluorination impacts as well both local and nonlocal vibrational couplings, whose strengths increase by a factor of about 2 with respect to the parent compounds.

2.
J Phys Chem B ; 111(26): 7488-96, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17564429

ABSTRACT

In this article, we report the characterization of a series of thiophene- and selenophene-based heteroacenes, materials with potential applications in organic electronics. In contrast to the usual alpha-oligothiophenes, these annelated oligomers have a larger band gap than most semiconductors currently used in the fabrication of organic field-effect transistors (OFETs) and therefore they are expected to be more stable in air. The synthesis of these fused-ring molecular materials was motivated by the notion that a more rigid and planar structure should reduce defects (such as torsion about single bonds between alpha-linked units or S-syn defects) and thus improve pi-conjugation for better charge-carrier mobility. The conjugational properties of these heteroacenes have been investigated by means of FT-Raman spectroscopy, revealing that pi-conjugation increases with the increasing number of annelated rings. DFT and TDDFT quantum chemical calculations have been performed, at the B3LYP/6-31G** level, to assess information regarding the minimum-energy molecular structure, topologies, and absolute energies of the frontier molecular orbitals around the gap, vibrational normal modes related to the main Raman features, and vertical one-electron excitations giving rise to the main optical absorptions.

3.
J Phys Chem A ; 111(5): 841-51, 2007 Feb 08.
Article in English | MEDLINE | ID: mdl-17266224

ABSTRACT

The synthesis, structure, and electronic properties of a novel cross-conjugated 10H-bisthienodithiocin-10-dicyanoethylene are reported. The X-ray single-crystal structure of the compound reveals a nonplanar conformation. The FT-IR and FT-Raman spectra of the compound show a great resemblance, which is a spectroscopic observation common to many push-pull systems. The UV-vis spectrum in CHCl3 displays a strong absorption at 370 nm accompanied by a shoulder at 430 nm so that the optical gap is 2.88 eV. On the other hand, the electrochemical gap amounts to 2.38 V. DFT and TDDFT quantum chemical calculations, at the B3LYP/6-31G** level, have been also performed to (i) determine the minimum-energy molecular structure, (ii) gain knowledge about the equilibrium atomic charges distribution, the topologies, and absolute energies of the frontier molecular orbitals around the gap and about the molecular vibrations which give rise to the most outstanding Raman bands experimentally evidenced, and (iii) to analyze the nature of the vertical one-electron excitations associated to the strongest UV-vis absorptions.


Subject(s)
Sulfur Compounds/chemistry , Sulfur Compounds/chemical synthesis , Thiepins/chemistry , Thiepins/chemical synthesis , Thiophenes/chemistry , Thiophenes/chemical synthesis , Crystallography, X-Ray , Models, Chemical , Models, Molecular , Molecular Structure , Quantum Theory , Sensitivity and Specificity , Spectrophotometry, Ultraviolet/methods , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Sulfur Compounds/isolation & purification
4.
J Phys Chem A ; 110(15): 5058-65, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16610825

ABSTRACT

In this article, we report the characterization of novel oligothienoacenes with five and seven fused thiophene rings, materials with potential applications in organic electronics. In contrast to usual alpha-linked oligothiophenes, these fused oligothiophenes have a larger band gap than most semiconductors currently used in the fabrication of organic field-effect transistors (OFETs) and therefore they are expected to be more stable in air. The synthesis of these fused-ring oligomers was motivated by the notion that a more rigid and planar structure should reduce defects (such as torsion about single bonds between alpha-linked units or S-syn defects) and thus improve conjugation for better charge-carrier mobility. The conjugational properties of these two molecular materials have been investigated by means of FT-Raman spectroscopy, revealing that conjugation still increases in passing from the five-ring oligomer to that with seven-rings. DFT and TDDFT quantum chemical calculations have been performed, at the B3LYP/6-31G level, to assess information regarding the minimum-energy molecular structure, topologies, and absolute energies of the frontier molecular orbitals (MOs.) around the gap, vibrational normal modes related to the main Raman features, and vertical one-electron excitations giving rise to the main optical absorptions.

5.
J Phys Chem B ; 109(44): 20737-45, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16853688

ABSTRACT

In this Article, we report on the synthesis and full characterization of three perfluorinated oligothiophenes, ranging in length from the trimer to the pentamer (PF-nT, with n = 3, 4, or 5). The differential pulse voltammetry (DPV) analysis of the compounds showed that they can be both oxidized and reduced (i.e., they display a dual or amphoteric electrochemical behavior), with the reduction peaks positively shifted relative to those of the corresponding unsubstituted oligothiophenes. The electrochemically determined energy gaps are in agreement with those measured from the UV-vis-NIR absorption spectra in solution. The conjugational properties have been investigated by means of FT-Raman spectroscopy, both as pure solids and as dilute solutes in CH(2)Cl(2), revealing that: (i) pi-conjugation does not still reach saturation with chain length for the longest oligomer, and (ii) conformational distortions from a nearly coplanar arrangement of the successive thiophene units upon solution are not too large. DFT and TDDFT quantum chemical calculations have been performed, at the B3LYP/6-31G level, to assess information about the optimized molecular structure, equilibrium atomic charges distribution, energies and topologies of the frontier molecular orbitals (MO) around the gap, vibrational normal modes associated with the most outstanding Raman scatterings, and vertical one-electron excitations that give rise to the main optical absorptions.

6.
J Phys Chem B ; 109(47): 22308-18, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16853905

ABSTRACT

The synthesis and a combined spectroscopic and density functional theoretical characterization of a 3',4'-ethylenedioxy-5,5' '-bis(dicyanomethylene)-5,5' '-dihydro-2,2':5',2' '-terthiophene analogue of 7,7,8,8-tetracyanoquinodimethane (TCNQ) are presented. Electrochemical data show that this novel trimer can be both reversibly reduced and oxidized at relatively low potentials. Quantum-chemical calculations show that the compound exhibits a quinoidal structure in its ground electronic state and that a certain degree of intramolecular charge transfer takes place from the central terthienyl moiety toward both =C(CN)2 end-caps. Therefore, the amphoteric redox behavior of this novel material can be related to the coexistence of an electron-impoverished terthienyl core endowed by two electron-enriched =C(CN)2 substituents. The UV-vis spectrum is dominated by the appearance of a strong absorption near 660 nm, attributable to the highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) pi-pi electronic transition of the terthienyl spine on the basis of time-dependent density functional theory (DFT) computations. The DFT calculations performed on the minimum-energy molecular geometry about the equilibrium atomic charge distribution, topologies, and energies of the frontier orbitals around the gap and about the Raman-active vibrations associated with the strongest Raman features are also consistent with a rather effective pi-electron conjugation and the partial degree of intramolecular charge transfer mentioned above. Our study reveals this novel heteroquinoid trimer could act as a promising candidate in organic field-effect transistor (OFET) applications.


Subject(s)
Methane , Nitriles/chemistry , Nitriles/chemical synthesis , Thiophenes/chemistry , Electrochemistry , Methane/analogs & derivatives , Methane/chemical synthesis , Methane/chemistry , Models, Chemical , Molecular Structure , Sensitivity and Specificity , Spectrophotometry, Ultraviolet/methods , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...