Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Clin Nutr ; 41(12): 2910-2917, 2022 12.
Article in English | MEDLINE | ID: mdl-35282986

ABSTRACT

INTRODUCTION: Low muscle mass is a common condition in the critically ill population and is associated with adverse clinical outcomes. The primary aim of this study was to analyze the prognostic significance of low muscle mass using computed tomography (CT) scans in COVID-19 critically ill patients. A second objective was to determine the accuracy and agreement in low muscle mass identification using diverse markers compared to CT as the gold standard. METHODS: This was a prospective cohort study of COVID-19 critically ill patients. Skeletal muscle area at the third lumbar vertebra was measured. Clinical outcomes (intensive care unit [ICU] and hospital length of stay [LOS], tracheostomy, days on mechanical ventilation [MV], and in-hospital mortality) were assessed. Phase angle, estimated fat-free mass index, calf circumference, and mid-upper arm circumference were measured as surrogate markers of muscle mass. RESULTS: Eighty-six patients were included (mean age ± SD: 48.6 ± 12.9; 74% males). Patients with low muscle mass (48%) had a higher rate of tracheostomy (50 vs 20%, p = 0.01), prolonged ICU (adjusted HR 0.53, 95%CI 0.30-0.92, p = 0.024) and hospital LOS (adjusted HR 0.50, 95% CI 0.29-0.86, p = 0.014). Bedside markers of muscle mass showed poor to fair agreement and accuracy compared to CT-assessed low muscle mass. CONCLUSION: Low muscle mass at admission was associated with prolonged length of ICU and hospital stays. Further studies are needed to establish targeted nutritional interventions to halt and correct the catabolic impact of COVID-19 in critically ill patients, based on standardized and reliable measurements of body composition.


Subject(s)
COVID-19 , Critical Illness , Male , Humans , Female , Critical Illness/therapy , Prognosis , Prospective Studies , Intensive Care Units , Length of Stay , Muscle, Skeletal/diagnostic imaging , Biomarkers
2.
Nefrologia (Engl Ed) ; 39(4): 343-354, 2019.
Article in English, Spanish | MEDLINE | ID: mdl-30737117

ABSTRACT

Diet composition has long been known to influence acid-base balance by providing acid or base precursors. In general, foods rich in protein, such as meat, cheese, eggs, and others, increase the production of acid in the body, whereas fruit and vegetables increase alkalis. The capacity of acid or base production of any food is called potential renal acid load (PRAL). Diets high in PRAL induce a low-grade metabolic acidosis state, which is associated with the development of metabolic alterations such as insulin resistance, diabetes, hypertension, chronic kidney disease, bone disorders, low muscle mass and other complications. The aim of this paper is to review the available evidence which evaluates the association of the PRAL of the diet with the incidence of chronic diseases and metabolic disorders, as well as related mechanisms involved in their development.


Subject(s)
Acid-Base Equilibrium , Diet , Kidney/metabolism , Diet/adverse effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...